DOI QR코드

DOI QR Code

Climate Aridity/humidity Characteristics in Seoul According to Changes in Temperature and Precipitation Based on RCP 4.5 and 8.5

RCP 4.5와 8.5에 따른 기온 및 강수량변화를 반영한 서울 기후 건조/습윤특성

  • 임창수 (경기대학교 공과대학 토목공학과) ;
  • 김성엽 (경기대학교 공과대학 토목공학과)
  • Received : 2014.02.13
  • Accepted : 2014.03.31
  • Published : 2014.05.31

Abstract

In this study, monthly and annual aridity indices which are the ratios of precipitation to potential evapotranspiration in Seoul climate measurement station were analyzed for past 50 years (1961~2010), and the ratio of aridity index simulated by climate change scenarios (RCP 4.5 and 8.5) for each future period (2011~2040, 2041~2070, 2071~2100) to aridity index for the past period (1971~2000) was analyzed. Furthermore, 5 different potential evapotranspiration equations (FAO P-M, Penman, Makkink, Priestley-Taylor, Hargreaves) were applied to analyze the effect of potential evapotranspiration equation on estimating aridity index and aridity index variation ratio (%). The study results indicate that the monthly precipitation, average temperature and potential evapotranspiration were increased in each future period as compared to past period for both RCP 4.5 and RCP 8.5. Furthermore, winter period showed more significant increase of potential evapotranspiration than summer period, but aridity index showed different patterns as compared with potential evapotranspiration reflecting the influence of precipitation. Therefore, it is necessary to make preparation for the increment of winter evapotranspiration in terms of water resources management. The monthly and annual aridity indices based on future climate change scenarios were greatly different according to potential evapotranspiration equations; however, monthly and annual patterns of aridity index variation ratio (%) in the future period as compared to past period were very similar regardless of applied potential evapotranspiration equation.

본 연구에서는 과거 50년간(1961~2010)의 서울 기후관측지점의 월 및 연별 강수량대비 잠재증발산량의 비인 건조지수의 변화를 분석하고, 과거기간(1971~2000)의 건조지수 대비 기후변화시나리오(RCP 4.5, RCP 8.5)에 따른 미래기간별(2011~2040, 2041~2070, 2071~2100) 건조지수 변화율(%) 분석을 실시하였다. 또한 각기 다른 5개의 잠재증발산량 산정식(FAO P-M식, Penman식, Makkink식, Priestley-Taylor식, Hargreaves식)을 적용하여 잠재증발산량 산정식이 건조지수와 건조지수 변화율(%)에 미치는 영향을 분석하였다. 분석결과에 의하면 RCP 4.5와 8.5 모두에서 과거기간에 비해서 기후변화시나리오에 따른 미래기간에서 월별 강수량, 평균기온 그리고 잠재증발산량이 증가하였다. 또한 잠재증발산량은 겨울철이 여름철과 비교하여 과거기간 대비 미래기간에서 큰 증가를 보였으나, 건조지수는 강수량의 영향으로 잠재증발산량과 다른 양상을 보였다. 따라서 수자원관리 측면에서 미래기후변화에 따른 겨울철 증발산량의 증가에 따른 적절한 대응이 필요하다. 기후변화시나리오를 반영하여 산정된 미래기간의 월 및 연별 건조지수 값은 각기 다른 잠재증발산량 적용식에 따라서 큰 차이를 보였다. 하지만 과거기간대비 미래기간의 월 및 연별 건조지수 변화율(%) 양상은 적용된 잠재증발산량 산정식에 따라서 큰 차이가 없었다.

Keywords

References

  1. Ahn, S.-R., Park, M.-J., Park, G.-A., and Kim S.-J. (2008). "Assessment of streamflow and evapotranspiration influence on the climate change under SRES A1B scenario." Korea Water Resources Association Conference, KWRA, pp. 1097-1101.
  2. Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rosch, T., and Siebert, S. (2003). "Global estimates of water withdrawals and availability under current and future "business-as-usual" conditions." Hydrol. Sci. J., Vol. 48, No. 3, pp. 339-348. https://doi.org/10.1623/hysj.48.3.339.45278
  3. Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO.
  4. Andrighetti, M., Zardi, D., and Franceschi, M. (2009). "History and analysis of the temperature series of Verona (1769-2006)." Meteorology and Atmospheric Physics, Vol. 103, pp. 267-277. https://doi.org/10.1007/s00703-008-0331-6
  5. Budyko, M.I. (1958). The heat balance of the earth's surface. trs Nina A. Stepanova, US Department of Commerce, Washington, D.D., 259 p.
  6. Chattopadhyay, N., and Hulme, M. (1997). "Evaporation and potential evapotranspiration in India under conditions of recent and future climate change." Agricultural and Forest Meteorology, Vol. 87, pp. 55-73. https://doi.org/10.1016/S0168-1923(97)00006-3
  7. de Martonne, E. (1942). "Nouvelle carte mondiale de l'indice d'aridite." Annales de Geographie, Vol. 51, pp. 242-250.
  8. Droogers, P., and Aerts, J. (2005). "Adaptation strategies to climate change and climate variability: A comparative study between seven contrasting river basins." Physics and Chemistry of the Earth, Vol. 30, pp. 339-346. https://doi.org/10.1016/j.pce.2005.06.015
  9. Emberger, L. (1930). "La vegetation de la region mediterraneenne: essai d'une classification des groupments vegetaux." Revue Generale de Botanique, Vol. 42(641-662), pp. 705-721.
  10. Erinc, S. (1965). An attempt on precipitation efficiency and a newindex. Istanbul University Institute Release. Baha Press, Istanbul (in Turkish).
  11. Hargreaves, G.H., and Samani, Z.A. (1985). "Reference crop evapotranspiration from temperature." Appl. Engr. Agric., Vol. 1, No. 1, pp. 96-99. https://doi.org/10.13031/2013.26773
  12. Im, E.S., Jung, I.W., and Bae, D.H. (2011). "The temporal and spatial structures of recent and future trends in extreme indices over Korea from a regional climate projection." International Journal of Climatology, Vol. 31, pp. 72-86. https://doi.org/10.1002/joc.2063
  13. IPCC. (2007a). Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge University Press: Cambridge.
  14. IPCC. (2007b). Climate change 2007: impacts, adptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC. Cambridge University Press: Cambridge.
  15. Kafle, H., and Bruins, H. (2009). "Climatic trends in Israel 1970-2002: warmer and increasing aridity inland." Climatic Change, Vol. 96, pp. 63-77. https://doi.org/10.1007/s10584-009-9578-2
  16. Khalili, D., Farnoud, T., Jamshidi, H., Kamgar-Haghighi, A.A., Zand-Parsa, sh. (2011). "Comparability analyses of the SPI and RDI meteorological drought indices in different climatic zones."Water Resources Management, Vol. 25, pp. 1737-1757. https://doi.org/10.1007/s11269-010-9772-z
  17. Kyoung, M.S., Lee, Y.W., Kim, H.S., and Kim, B.S. (2009). "Assessment of climate change effect on temperature and drought in Seoul : Based on AR4 SRES A2 senario." Journal of Korea Water Resources Association, Vol. 29, No. 2, pp. 181-191.
  18. Lage, M., Bamouh, A., Karrou, M., and Mourid, M.EI. (2003). "Estimating of rice evapotranspiration using a microlysimeter technique and comparison with FAO Penman-Monteith and pan evaporation methods under Moroccan conditions." Agronomie, Vol. 23, pp. 625-631. https://doi.org/10.1051/agro:2003040
  19. Lang, R. (1920). Verwitterung und bodenbildung als einführung in die bodenkunde. Schweizerbart Science Publishers, Stuttgart.
  20. Lee, W.H., Hong, S.H., Kim, Y.G., and Chung, E-S. (2011). "Temporal and spatial variability of precipitation and daily average temperature in the South Korea." Journal of Korean Society of Hazard Mitigation, Vol. 11, pp. 73-86. https://doi.org/10.9798/KOSHAM.2011.11.4.073
  21. Li, Z., Zheng F.-L., and Liu, W.-Z. (2012). "Spatiotemporal characteristics of reference evapotranspiration during 1961-2009 and its projected changes during 2011-2099 on the loess Plateau of China." Agricultural and Forest Meteorology, Vol. 154-155, pp. 147-155. https://doi.org/10.1016/j.agrformet.2011.10.019
  22. Liu, X., Zhang, D., Luo, Y., and Liu, C. (2013). "Spatial and temporal changes in aridity in northwest China: 1960 to 2010." Theor. Appl. Climatol., Vol. 112, pp. 307-316. https://doi.org/10.1007/s00704-012-0734-7
  23. Lu, J.B., Sun, G., McNulty, S.G., and Amataya, D.M. (2005). "A comparison of six potential evapotranspiration methods for regional use in the southeastern United States." J. Am. Water Resour. Assoc., Vol. 41, pp. 621-633. https://doi.org/10.1111/j.1752-1688.2005.tb03759.x
  24. Makkink, G.F. (1957). "Testing the Penman formula by means of lysimeters." J. Instit. Water Engineers, Vol. 11, pp. 277-288.
  25. Munson, S.M., Belnap, J., Schelz, C.D., Moran, M., and Carolin, T.W. (2011). "On the brink of change: plant response to climate on the Colorado Plateau." Ecosphere, Vol. 2, No. 6, pp. 1-15.
  26. NIMR. (2011). Report on Climate Change Scenario Corresponding to IPCC 5th Assessment Report
  27. Park, J.H., Kang, M.S., Song, I.H., Hwang, S.H., and Song, J.-H. (2013). "Development of IDF curves based on RCP 4.5 scenario for 30-reserviors in South Korea." J. Korean Soc. Hazard Mitig., Vol. 13, No. 6, pp. 145-159. https://doi.org/10.9798/KOSHAM.2013.13.6.145
  28. Penman, H.L. (1948). "Natural evaporation from open water, bare soil, and grass." Proc. Roy. Soc. London, Vol. A193, pp. 120-146.
  29. Priestley, C.H.B., and Taylor, R.J. (1972). "On the assessment of the surface heat flux and evaporation using large-scale parameters." Monthly Weather Review, Vol. 100, pp. 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  30. Rim, C.-S. (2008). "Comparison of evapotranspiration estimation approaches considering grass reference crop." Journal of Korea Water Resources Association, Vol. 41, No. 2, pp. 213-229. https://doi.org/10.3741/JKWRA.2008.41.2.212
  31. Sahin, S. (2012). "An aridity index defined by precipitation and specific humidity." Journal of Hydrology, Vol. 444-445, pp. 199-208. https://doi.org/10.1016/j.jhydrol.2012.04.019
  32. Salvati, L., Perini, L., Sabbi, A., and Bajocco, S. (2011). "Climate aridity and land use changes: A regionalscale analysis." Geographical Research, doi:10.1111/j.1745-5871.2011.00723.x.
  33. Schlünzen, K.H., Hoffmann, P., Rosenhagen, G., and Riecke, W. (2010). "Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg." International Journal of Climatology, Vol. 30, pp. 1121-1136.
  34. Shin, J.-Y., Joo, K.-W., Kim, S.Y., and Heo, J.-H. (2011). "Assessment of depth-duration-frequency relationship considering climate change in Seoul." Korea Water Resources Association Conference, KWRA, pp. 370-374.
  35. Sulieman, H.M., and Elagib, N.A. (2012). "Implications of climate, land-use and land-cover changes for pastoralism in eastern Sudan." Journal of Arid Environments, Vol. 85, pp. 132-141. https://doi.org/10.1016/j.jaridenv.2012.05.001
  36. Tabari, H., and Hosseinzadeh Talaee, P. (2011). "Recent trends of mean maximum and minimum air temperatures in the western half of Iran." Meteorology and Atmospheric Physics, Vol. 111, pp. 121-131. https://doi.org/10.1007/s00703-011-0125-0
  37. Thornthwaite, C. (1948). "An approach towards a rational classification of climate." Geogr. Rev. Vol. 38, pp. 55-94. https://doi.org/10.2307/210739
  38. Trajkovic, S. (2005). "Temperature-based approaches for estimating reference evapotranspiration." J. of Irrigation and Drainage Engineering, Vol. 131, No. 4, pp. 316-323. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:4(316)
  39. Tsakiris, G., and Vangelis, H. (2004). "Towards a drought watch system based on spatial SPI."Water Resources Management, Vol. 18, No. 1, pp. 1-12. https://doi.org/10.1023/B:WARM.0000015410.47014.a4
  40. UNEP. (1992). World atlas of desertification. Edward Arnold, London.
  41. UNESCO. (1979). Map of the world distribution of arid regions: explanatory note. MAP Technical Notes 7, UNESCO: Paris, 54.
  42. Vorosmarty, C.J., Federer, C.A., and Schloss, A.L. (1998). "Potential evaporation functions compared on US watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modelling." J. Hydrol., Vol. 207, pp. 147-169. https://doi.org/10.1016/S0022-1694(98)00109-7
  43. Walter, I.A., Allen, R.G., Elliott, R., Mecham, B., Jensen, M.E., Itenfisu, D., Howell, T.A., Snyder, R., Brown, P., Echings, S., Spofford, T., Hattendorf, M., Cuenca, R.H., Wright, J.L., and Martin, D. (2000). ASCE standardized reference evapotranspiration equation, p. 209-215. In: Evans RG, Benham BL, Trooien TP (eds.) Proc. National Irrigation Symposium, ASAE, Nov. 14-16, 2000, Phoenix, AZ.

Cited by

  1. Projection of Temporal Trends on Drought Characteristics using the Standardized Precipitation Evapotranspiration Index (SPEI) in South Korea vol.57, pp.1, 2015, https://doi.org/10.5389/KSAE.2015.57.1.037
  2. Effect of Climate Change Scenarios and Regional Climate Models on the Drought Severity-Duration-Frequency Analysis vol.16, pp.2, 2016, https://doi.org/10.9798/KOSHAM.2016.16.2.351
  3. Evaluation and Calibration Method Proposal of RCP Daily Precipitation Data vol.15, pp.2, 2015, https://doi.org/10.9798/KOSHAM.2015.15.2.79
  4. Characteristics of Daily Precipitation Data Based on the Detailed Climate Change Ensemble Scenario Depending on the Regional Climate Models and the Calibration vol.15, pp.4, 2015, https://doi.org/10.9798/KOSHAM.2015.15.4.261
  5. Analysis of Drought Intensity and Trends Using the Modified SPEI in South Korea from 1981 to 2010 vol.10, pp.3, 2018, https://doi.org/10.3390/w10030327
  6. Non-Stationary Frequency Analysis of Future Extreme Rainfall using CMIP5 GCMs over the Korean Peninsula vol.18, pp.3, 2018, https://doi.org/10.9798/KOSHAM.2018.18.3.73