References
- Attardi, L. D., Reczek, E. E., Cosmas, C., Demicco, E. G., McCurrach, M. E., Lowe, S. W. and Jacks, T. (2000) PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev. 14, 704-718.
- Bharadwaj, U., Marin-Muller, C., Li, M., Chen, C. and Yao, Q. (2011) Mesothelin confers pancreatic cancer cell resistance to TNF-alpha-induced apoptosis through Akt/PI3K/NF-kappaB activation and IL-6/Mcl-1 overexpression. Mol. Cancer 10, 106. https://doi.org/10.1186/1476-4598-10-106
- Chen, D., Zhang, J., Li, M., Rayburn, E. R., Wang, H. and Zhang, R. (2009) RYBP stabilizes p53 by modulating MDM2. EMBO Rep. 10, 166-172. https://doi.org/10.1038/embor.2008.231
- Chen, I. H., Wang, H. H., Hsieh, Y. S., Huang, W. C., Yeh, H. I. and Chuang, Y. J. (2013) PRSS23 is essential for the Snail-dependent endothelial-to-mesenchymal transition during valvulogenesis in zebrafish. Cardiovasc. Res. 97, 443-453. https://doi.org/10.1093/cvr/cvs355
- Dietz, H. C., Cutting, G. R., Pyeritz, R. E., Maslen, C. L., Sakai, L. Y., Corson, G. M., Puffenberger, E. G., Hamosh, A., Nanthakumar, E. J., Curristin, S. M., et al. (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352, 337-339. https://doi.org/10.1038/352337a0
- Gui, S., Yuan, G., Wang, L., Zhou, L., Xue, Y., Yu, Y., Zhang, J., Zhang, M., Yang, Y. and Wang, D. W. (2013) Wnt3a regulates proliferation, apoptosis and function of pancreatic NIT-1 beta cells via activation of IRS2/PI3K signaling. J. Cell. Biochem. 114, 1488-1497. https://doi.org/10.1002/jcb.24490
- Habashi, J. P., Judge, D. P., Holm, T. M., Cohn, R. D., Loeys, B. L., Cooper, T. K., Myers, L., Klein, E. C., Liu, G., Calvi, C., et al. (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312, 117-121. https://doi.org/10.1126/science.1124287
- Kettenhofen, R., Hoppe, J., Eberhard, G., Seul, C., Ko, Y. and Sachinidis, A. (2001) Regulation of Gadd45a mRNA expression in vascular smooth muscle under growth and stress conditions. Cell. Signal. 13, 787-799. https://doi.org/10.1016/S0898-6568(01)00198-X
- Kim, K. L., Yang, J. H., Song, S. H., Kim, J. Y., Jang, S. Y., Kim, J. M., Kim, J. A., Sung, K. I., Kim, Y. W., Suh, Y. L., et al. (2013) Positive correlation between the dysregulation of transforming growth factor-beta1 and aneurysmal pathological changes in patients with Marfan syndrome. Circ. J. 77, 952-958. https://doi.org/10.1253/circj.CJ-12-0874
- Kunieda, T., Minamino, T., Nishi, J., Tateno, K., Oyama, T., Katsuno, T., Miyauchi, H., Orimo, M., Okada, S., Takamura, M., et al. (2006) Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway. Circulation 114, 953-960. https://doi.org/10.1161/CIRCULATIONAHA.106.626606
- Matt, P., Schoenhoff, F., Habashi, J., Holm, T., Van Erp, C., Loch, D., Carlson, O. D., Griswold, B. F., Fu, Q., De Backer, J., et al. (2009) Circulating transforming growth factor-beta in Marfan syndrome. Circulation 120, 526-532. https://doi.org/10.1161/CIRCULATIONAHA.108.841981
- Murr, R., Loizou, J. I., Yang, Y. G., Cuenin, C., Li, H., Wang, Z. Q. and Herceg, Z. (2006) Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat. Cell Biol. 8, 91-99. https://doi.org/10.1038/ncb1343
- Neptune, E. R., Frischmeyer, P. A., Arking, D. E., Myers, L., Bunton, T. E., Gayraud, B., Ramirez, F., Sakai, L. Y. and Dietz, H. C. (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 33, 407-411. https://doi.org/10.1038/ng1116
- Palombo, D., Maione, M., Cifiello, B. I., Udini, M., Maggio, D. and Lupo, M. (1999) Matrix metalloproteinases. Their role in degenerative chronic diseases of abdominal aorta. J. Cardiovasc. Surg. (Torino) 40, 257-260.
- Pereira, L., Lee, S. Y., Gayraud, B., Andrikopoulos, K., Shapiro, S. D., Bunton, T., Biery, N. J., Dietz, H. C., Sakai, L. Y. and Ramirez, F. (1999) Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc. Natl. Acad. Sci. U.S.A. 96, 3819-3823. https://doi.org/10.1073/pnas.96.7.3819
- Pyeritz, R. E. (2000) The Marfan syndrome. Annu. Rev. Med. 51, 481-510. https://doi.org/10.1146/annurev.med.51.1.481
- Radonic, T., de Witte, P., Groenink, M., de Waard, V., Lutter, R., van Eijk, M., Jansen, M., Timmermans, J., Kempers, M., Scholte, A. J., et al. (2012) Inflammation aggravates disease severity in Marfan syndrome patients. PLoS One 7, e32963. https://doi.org/10.1371/journal.pone.0032963
- Sanada, F., Taniyama, Y., Iekushi, K., Azuma, J., Okayama, K., Kusunoki, H., Koibuchi, N., Doi, T., Aizawa, Y. and Morishita, R. (2009) Negative action of hepatocyte growth factor/c-Met system on angiotensin II signaling via ligand-dependent epithelial growth factor receptor degradation mechanism in vascular smooth muscle cells. Circ. Res. 105, 667-675. https://doi.org/10.1161/CIRCRESAHA.109.202713
- Schwill, S., Seppelt, P., Grunhagen, J., Ott, C.E., Jugold, M., Ruhparwar, A., Robinson, P. N., Karck, M. and Kallenbach, K. (2013) The fibrillin-1 hypomorphic mgR/mgR murine model of Marfan syndrome shows severe elastolysis in all segments of the aorta. J. Vasc. Surg. 57, 1628-1636. https://doi.org/10.1016/j.jvs.2012.10.007
- Squatrito, M., Gorrini, C. and Amati, B. (2006) Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol. 16, 433-442. https://doi.org/10.1016/j.tcb.2006.07.007
- Wilkinson, J. C., Richter, B. W., Wilkinson, A. S., Burstein, E., Rumble, J. M., Balliu, B. and Duckett, C. S. (2004) VIAF, a conserved inhibitor of apoptosis (IAP)-interacting factor that modulates caspase activation. J. Biol. Chem. 279, 51091-51099. https://doi.org/10.1074/jbc.M409623200
- Yao, Z., Jaeger, J. C., Ruzzo, W. L., Morale, C. Z., Emond, M., Francke, U., Milewicz, D. M., Schwartz, S. M. and Mulvihill, E. R. (2007) A Marfan syndrome gene expression phenotype in cultured skin fibroblasts. BMC Genomics 8, 319. https://doi.org/10.1186/1471-2164-8-319
- Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., and Tohyama, M. (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem. 276, 13935-13940. https://doi.org/10.1074/jbc.M010677200
- Zhou, A., Ou, A. C., Cho, A., Benz, E. J., Jr. and Huang, S. C. (2008) Novel splicing factor RBM25 modulates Bcl-x pre-mRNA 5' splice site selection. Mol. Cell. Biol. 28, 5924-5936. https://doi.org/10.1128/MCB.00560-08
Cited by
- Molecular mechanisms of inherited thoracic aortic disease – from gene variant to surgical aneurysm vol.7, pp.1, 2015, https://doi.org/10.1007/s12551-014-0147-1
- Transforming Growth Factor β Receptor Type I Inhibitor, Galunisertib, Has No Beneficial Effects on Aneurysmal Pathological Changes in Marfan Mice vol.28, pp.1, 2014, https://doi.org/10.4062/biomolther.2019.042