DOI QR코드

DOI QR Code

Analysis of Disease Progression-Associated Gene Expression Profile in Fibrillin-1 Mutant Mice: New Insight into Molecular Pathogenesis of Marfan Syndrome

  • Received : 2014.01.28
  • Accepted : 2014.03.10
  • Published : 2014.03.31

Abstract

Marfan syndrome (MFS) is a dominantly inherited connective tissue disorder caused by mutations in the gene encoding fibrillin-1 (FBN1) and is characterized by aortic dilatation and dissection, which is the primary cause of death in untreated MFS patients. However, disease progression-associated changes in gene expression in the aortic lesions of MFS patients remained unknown. Using a mouse model of MFS, FBN1 hypomorphic mouse (mgR/mgR), we characterized the aortic gene expression profiles during the progression of the MFS. Homozygous mgR mice exhibited MFS-like phenotypic features, such as fragmentation of elastic fibers throughout the vessel wall and were graded into mgR1-4 based on the pathological severity in aortic walls. Comparative gene expression profiling of WT and four mgR mice using microarrays revealed that the changes in the transcriptome were a direct reflection of the severity of aortic pathological features. Gene ontology analysis showed that genes related to oxidation/reduction, myofibril assembly, cytoskeleton organization, and cell adhesion were differentially expressed in the mgR mice. Further analysis of differentially expressed genes identified several candidate genes whose known roles were suggestive of their involvement in the progressive destruction of aorta during MFS. This study is the first genome-wide analysis of the aortic gene expression profiles associated with the progression of MFS. Our findings provide valuable information regarding the molecular pathogenesis during MFS progression and contribute to the development of new biomarkers as well as improved therapeutic strategies.

Keywords

References

  1. Attardi, L. D., Reczek, E. E., Cosmas, C., Demicco, E. G., McCurrach, M. E., Lowe, S. W. and Jacks, T. (2000) PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev. 14, 704-718.
  2. Bharadwaj, U., Marin-Muller, C., Li, M., Chen, C. and Yao, Q. (2011) Mesothelin confers pancreatic cancer cell resistance to TNF-alpha-induced apoptosis through Akt/PI3K/NF-kappaB activation and IL-6/Mcl-1 overexpression. Mol. Cancer 10, 106. https://doi.org/10.1186/1476-4598-10-106
  3. Chen, D., Zhang, J., Li, M., Rayburn, E. R., Wang, H. and Zhang, R. (2009) RYBP stabilizes p53 by modulating MDM2. EMBO Rep. 10, 166-172. https://doi.org/10.1038/embor.2008.231
  4. Chen, I. H., Wang, H. H., Hsieh, Y. S., Huang, W. C., Yeh, H. I. and Chuang, Y. J. (2013) PRSS23 is essential for the Snail-dependent endothelial-to-mesenchymal transition during valvulogenesis in zebrafish. Cardiovasc. Res. 97, 443-453. https://doi.org/10.1093/cvr/cvs355
  5. Dietz, H. C., Cutting, G. R., Pyeritz, R. E., Maslen, C. L., Sakai, L. Y., Corson, G. M., Puffenberger, E. G., Hamosh, A., Nanthakumar, E. J., Curristin, S. M., et al. (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352, 337-339. https://doi.org/10.1038/352337a0
  6. Gui, S., Yuan, G., Wang, L., Zhou, L., Xue, Y., Yu, Y., Zhang, J., Zhang, M., Yang, Y. and Wang, D. W. (2013) Wnt3a regulates proliferation, apoptosis and function of pancreatic NIT-1 beta cells via activation of IRS2/PI3K signaling. J. Cell. Biochem. 114, 1488-1497. https://doi.org/10.1002/jcb.24490
  7. Habashi, J. P., Judge, D. P., Holm, T. M., Cohn, R. D., Loeys, B. L., Cooper, T. K., Myers, L., Klein, E. C., Liu, G., Calvi, C., et al. (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312, 117-121. https://doi.org/10.1126/science.1124287
  8. Kettenhofen, R., Hoppe, J., Eberhard, G., Seul, C., Ko, Y. and Sachinidis, A. (2001) Regulation of Gadd45a mRNA expression in vascular smooth muscle under growth and stress conditions. Cell. Signal. 13, 787-799. https://doi.org/10.1016/S0898-6568(01)00198-X
  9. Kim, K. L., Yang, J. H., Song, S. H., Kim, J. Y., Jang, S. Y., Kim, J. M., Kim, J. A., Sung, K. I., Kim, Y. W., Suh, Y. L., et al. (2013) Positive correlation between the dysregulation of transforming growth factor-beta1 and aneurysmal pathological changes in patients with Marfan syndrome. Circ. J. 77, 952-958. https://doi.org/10.1253/circj.CJ-12-0874
  10. Kunieda, T., Minamino, T., Nishi, J., Tateno, K., Oyama, T., Katsuno, T., Miyauchi, H., Orimo, M., Okada, S., Takamura, M., et al. (2006) Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway. Circulation 114, 953-960. https://doi.org/10.1161/CIRCULATIONAHA.106.626606
  11. Matt, P., Schoenhoff, F., Habashi, J., Holm, T., Van Erp, C., Loch, D., Carlson, O. D., Griswold, B. F., Fu, Q., De Backer, J., et al. (2009) Circulating transforming growth factor-beta in Marfan syndrome. Circulation 120, 526-532. https://doi.org/10.1161/CIRCULATIONAHA.108.841981
  12. Murr, R., Loizou, J. I., Yang, Y. G., Cuenin, C., Li, H., Wang, Z. Q. and Herceg, Z. (2006) Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat. Cell Biol. 8, 91-99. https://doi.org/10.1038/ncb1343
  13. Neptune, E. R., Frischmeyer, P. A., Arking, D. E., Myers, L., Bunton, T. E., Gayraud, B., Ramirez, F., Sakai, L. Y. and Dietz, H. C. (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 33, 407-411. https://doi.org/10.1038/ng1116
  14. Palombo, D., Maione, M., Cifiello, B. I., Udini, M., Maggio, D. and Lupo, M. (1999) Matrix metalloproteinases. Their role in degenerative chronic diseases of abdominal aorta. J. Cardiovasc. Surg. (Torino) 40, 257-260.
  15. Pereira, L., Lee, S. Y., Gayraud, B., Andrikopoulos, K., Shapiro, S. D., Bunton, T., Biery, N. J., Dietz, H. C., Sakai, L. Y. and Ramirez, F. (1999) Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc. Natl. Acad. Sci. U.S.A. 96, 3819-3823. https://doi.org/10.1073/pnas.96.7.3819
  16. Pyeritz, R. E. (2000) The Marfan syndrome. Annu. Rev. Med. 51, 481-510. https://doi.org/10.1146/annurev.med.51.1.481
  17. Radonic, T., de Witte, P., Groenink, M., de Waard, V., Lutter, R., van Eijk, M., Jansen, M., Timmermans, J., Kempers, M., Scholte, A. J., et al. (2012) Inflammation aggravates disease severity in Marfan syndrome patients. PLoS One 7, e32963. https://doi.org/10.1371/journal.pone.0032963
  18. Sanada, F., Taniyama, Y., Iekushi, K., Azuma, J., Okayama, K., Kusunoki, H., Koibuchi, N., Doi, T., Aizawa, Y. and Morishita, R. (2009) Negative action of hepatocyte growth factor/c-Met system on angiotensin II signaling via ligand-dependent epithelial growth factor receptor degradation mechanism in vascular smooth muscle cells. Circ. Res. 105, 667-675. https://doi.org/10.1161/CIRCRESAHA.109.202713
  19. Schwill, S., Seppelt, P., Grunhagen, J., Ott, C.E., Jugold, M., Ruhparwar, A., Robinson, P. N., Karck, M. and Kallenbach, K. (2013) The fibrillin-1 hypomorphic mgR/mgR murine model of Marfan syndrome shows severe elastolysis in all segments of the aorta. J. Vasc. Surg. 57, 1628-1636. https://doi.org/10.1016/j.jvs.2012.10.007
  20. Squatrito, M., Gorrini, C. and Amati, B. (2006) Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol. 16, 433-442. https://doi.org/10.1016/j.tcb.2006.07.007
  21. Wilkinson, J. C., Richter, B. W., Wilkinson, A. S., Burstein, E., Rumble, J. M., Balliu, B. and Duckett, C. S. (2004) VIAF, a conserved inhibitor of apoptosis (IAP)-interacting factor that modulates caspase activation. J. Biol. Chem. 279, 51091-51099. https://doi.org/10.1074/jbc.M409623200
  22. Yao, Z., Jaeger, J. C., Ruzzo, W. L., Morale, C. Z., Emond, M., Francke, U., Milewicz, D. M., Schwartz, S. M. and Mulvihill, E. R. (2007) A Marfan syndrome gene expression phenotype in cultured skin fibroblasts. BMC Genomics 8, 319. https://doi.org/10.1186/1471-2164-8-319
  23. Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., and Tohyama, M. (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem. 276, 13935-13940. https://doi.org/10.1074/jbc.M010677200
  24. Zhou, A., Ou, A. C., Cho, A., Benz, E. J., Jr. and Huang, S. C. (2008) Novel splicing factor RBM25 modulates Bcl-x pre-mRNA 5' splice site selection. Mol. Cell. Biol. 28, 5924-5936. https://doi.org/10.1128/MCB.00560-08

Cited by

  1. Molecular mechanisms of inherited thoracic aortic disease – from gene variant to surgical aneurysm vol.7, pp.1, 2015, https://doi.org/10.1007/s12551-014-0147-1
  2. Transforming Growth Factor β Receptor Type I Inhibitor, Galunisertib, Has No Beneficial Effects on Aneurysmal Pathological Changes in Marfan Mice vol.28, pp.1, 2014, https://doi.org/10.4062/biomolther.2019.042