DOI QR코드

DOI QR Code

PET/CT planning during chemoradiotherapy for esophageal cancer

  • Seol, Ki Ho (Department of Radiation Oncology, Kyungpook National University School of Medicine) ;
  • Lee, Jeong Eun (Department of Radiation Oncology, Kyungpook National University School of Medicine)
  • Received : 2013.11.14
  • Accepted : 2014.02.10
  • Published : 2014.03.31

Abstract

Purpose: To evaluate the usefulness of positron emission tomography/computed tomography (PET/CT) for field modification during radiotherapy in esophageal cancer. Materials and Methods: We conducted a retrospective study on 33 patients that underwent chemoradiotherapy (CRT). Pathologic findings were squamous cell carcinoma in 32 patients and adenocarcinoma in 1 patient. All patients underwent PET/CT scans before and during CRT (after receiving 40 Gy and before a 20 Gy boost dose). Response evaluation was determined by PET/CT using metabolic tumor volume (MTV), total glycolytic activity (TGA), MTV ratio (rMTV) and TGA ratio (rTGA), or determined by CT. rMTV and rTGA were reduction ratio of MTV and TGA between before and during CRT, respectively. Results: Significant decreases in MTV ($MTV_{2.5}$: mean 70.09%, p < 0.001) and TGA ($TGAV_{2.5}$: mean 79.08%, p < 0.001) were found between before and during CRT. Median $rMTV_{2.5}$ was 0.299 (range, 0 to 0.98) and median $rTGAV_{2.5}$ was 0.209 (range, 0 to 0.92). During CRT, PET/CT detected newly developed distant metastasis in 1 patient, and this resulted in a treatment strategy change. At a median 4 months (range, 0 to 12 months) after completion of CRT, 8 patients (24.2%) achieved clinically complete response, 11 (33.3%) partial response, 5 (15.2%) stable disease, and 9 (27.3%) disease progression. $SUV_{max}$ (p = 0.029), $rMTV_{50%}$ (p = 0.016), $rMTV_{75%}$ (p = 0.023) on intra-treatment PET were found to correlate with complete clinical response. Conclusion: PET/CT during CRT can provide additional information useful for radiotherapy planning and offer the potential for tumor response evaluation during CRT. $rMTV_{50%}$ during CRT was found to be a useful predictor of clinical response.

Keywords

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin 2012;62:10-29. https://doi.org/10.3322/caac.20138
  2. Ra J, Paulson EC, Kucharczuk J, et al. Postoperative mortality after esophagectomy for cancer: development of a preoperative risk prediction model. Ann Surg Oncol 2008;15:1577-84. https://doi.org/10.1245/s10434-008-9867-4
  3. Flanagan FL, Dehdashti F, Siegel BA, et al. Staging of esophageal cancer with 18F-fluorodeoxyglucose positron emission tomography. AJR Am J Roentgenol 1997;168:417-24. https://doi.org/10.2214/ajr.168.2.9016218
  4. Moureau-Zabotto L, Touboul E, Lerouge D, et al. Impact of CT and 18F-deoxyglucose positron emission tomography image fusion for conformal radiotherapy in esophageal carcinoma. Int J Radiat Oncol Biol Phys 2005;63:340-5. https://doi.org/10.1016/j.ijrobp.2005.02.039
  5. Hong TS, Killoran JH, Mamede M, Mamon HJ. Impact of manual and automated interpretation of fused PET/CT data on esophageal target definitions in radiation planning. Int J Radiat Oncol Biol Phys 2008;72:1612-8. https://doi.org/10.1016/j.ijrobp.2008.07.061
  6. Schreurs LM, Busz DM, Paardekooper GM, et al. Impact of 18-fluorodeoxyglucose positron emission tomography on computed tomography defined target volumes in radiation treatment planning of esophageal cancer: reduction in geographic misses with equal inter-observer variability: PET/ CT improves esophageal target definition. Dis Esophagus 2010;23:493-501. https://doi.org/10.1111/j.1442-2050.2009.01044.x
  7. Gondi V, Bradley K, Mehta M, et al. Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2007;67:187-95. https://doi.org/10.1016/j.ijrobp.2006.09.033
  8. Song SY, Kim JH, Ryu JS, et al. FDG-PET in the prediction of pathologic response after neoadjuvant chemoradiotherapy in locally advanced, resectable esophageal cancer. Int J Radiat Oncol Biol Phys 2005;63:1053-9. https://doi.org/10.1016/j.ijrobp.2005.03.033
  9. Rice TW, Blackstone EH, Rusch VW. 7th edition of the AJCC Cancer Staging Manual: esophagus and esophagogastric junction. Ann Surg Oncol 2010;17:1721-4. https://doi.org/10.1245/s10434-010-1024-1
  10. Leong T, Everitt C, Yuen K, et al. A prospective study to evaluate the impact of FDG-PET on CT-based radiotherapy treatment planning for oesophageal cancer. Radiother Oncol 2006;78:254-61. https://doi.org/10.1016/j.radonc.2006.02.014
  11. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991;21:109-22.
  12. Konski A, Doss M, Milestone B, et al. The integration of 18-fluoro-deoxy-glucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma. Int J Radiat Oncol Biol Phys 2005;61:1123-8. https://doi.org/10.1016/j.ijrobp.2004.07.717
  13. Zhong X, Yu J, Zhang B, et al. Using 18F-fluorodeoxyglucose positron emission tomography to estimate the length of gross tumor in patients with squamous cell carcinoma of the esophagus. Int J Radiat Oncol Biol Phys 2009;73:136-41. https://doi.org/10.1016/j.ijrobp.2008.04.015
  14. Han D, Yu J, Yu Y, et al. Comparison of (18)F-fluorothymidine and (18)F-fluorodeoxyglucose PET/CT in delineating gross tumor volume by optimal threshold in patients with squamous cell carcinoma of thoracic esophagus. Int J Radiat Oncol Biol Phys 2010;76:1235-41. https://doi.org/10.1016/j.ijrobp.2009.07.1681
  15. Vali FS, Nagda S, Hall W, et al. Comparison of standardized uptake value-based positron emission tomography and computed tomography target volumes in esophageal cancer patients undergoing radiotherapy. Int J Radiat Oncol Biol Phys 2010;78:1057-63. https://doi.org/10.1016/j.ijrobp.2009.09.022
  16. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228-47. https://doi.org/10.1016/j.ejca.2008.10.026
  17. Lordick F, Ott K, Krause BJ, et al. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol 2007;8:797-805. https://doi.org/10.1016/S1470-2045(07)70244-9
  18. Kato H, Miyazaki T, Nakajima M, et al. The incremental effect of positron emission tomography on diagnostic accuracy in the initial staging of esophageal carcinoma. Cancer 2005;103:148-56. https://doi.org/10.1002/cncr.20724
  19. Himeno S, Yasuda S, Shimada H, Tajima T, Makuuchi H. Evaluation of esophageal cancer by positron emission tomography. Jpn J Clin Oncol 2002;32:340-6. https://doi.org/10.1093/jjco/hyf073
  20. van Der Wel A, Nijsten S, Hochstenbag M, et al. Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study. Int J Radiat Oncol Biol Phys 2005;61:649-55. https://doi.org/10.1016/j.ijrobp.2004.06.205
  21. Drudi FM, Trippa F, Cascone F, et al. Esophagogram and CT vs endoscopic and surgical specimens in the diagnosis of esophageal carcinoma. Radiol Med 2002;103:344-52.
  22. Yuan S, Yu Y, Chao KS, et al. Additional value of PET/CT over PET in assessment of locoregional lymph nodes in thoracic esophageal squamous cell cancer. J Nucl Med 2006;47:1255-9.
  23. Muijs CT, Schreurs LM, Busz DM, et al. Consequences of additional use of PET information for target volume delineation and radiotherapy dose distribution for esophageal cancer. Radiother Oncol 2009;93:447-53. https://doi.org/10.1016/j.radonc.2009.08.030
  24. Bradley J, Thorstad WL, Mutic S, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004;59:78-86. https://doi.org/10.1016/j.ijrobp.2003.10.044
  25. Wieder HA, Brucher BL, Zimmermann F, et al. Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol 2004;22:900-8. https://doi.org/10.1200/JCO.2004.07.122
  26. Roedl JB, Colen RR, Holalkere NS, Fischman AJ, Choi NC, Blake MA. Adenocarcinomas of the esophagus: response to chemoradiotherapy is associated with decrease of metabolic tumor volume as measured on PET-CT: comparison to histopathologic and clinical response evaluation. Radiother Oncol 2008;89:278-86. https://doi.org/10.1016/j.radonc.2008.06.014
  27. Hyun SH, Choi JY, Shim YM, et al. Prognostic value of metabolic tumor volume measured by 18F-fluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma. Ann Surg Oncol 2010;17:115-22. https://doi.org/10.1245/s10434-009-0719-7
  28. Jayachandran P, Pai RK, Quon A, et al. Postchemoradiotherapy positron emission tomography predicts pathologic response and survival in patients with esophageal cancer. Int J Radiat Oncol Biol Phys 2012;84:471-7. https://doi.org/10.1016/j.ijrobp.2011.12.029

Cited by

  1. Clinical outcomes of adjuvant radiation therapy and prognostic factors in early stage uterine cervical cancer vol.33, pp.2, 2014, https://doi.org/10.3857/roj.2015.33.2.126
  2. Interdisziplinäre Therapie des Ösophaguskarzinoms vol.20, pp.3, 2014, https://doi.org/10.1007/s15004-017-5559-1
  3. Radiotherapy volume delineation using 18F-FDG-PET/CT modifies gross node volume in patients with oesophageal cancer vol.20, pp.11, 2018, https://doi.org/10.1007/s12094-018-1879-3
  4. PET imaging in adaptive radiotherapy of gastrointestinal tumors vol.62, pp.4, 2014, https://doi.org/10.23736/s1824-4785.18.03081-9
  5. Dosimetric impact of positron emission tomography-based gross tumour volume (GTV) delineation over conventional CT-based GTV delineation for carcinoma oesophagus vol.20, pp.3, 2014, https://doi.org/10.1017/s1460396920000278