DOI QR코드

DOI QR Code

Structure direct agent-assisted hydrothermal synthesis and small gases adsorption behavior of pure RHO zeolite

구조유도물질 18-crown-6 ether를 이용한 순수한 RHO 제올라이트 수열합성과 작은 가스 흡착 거동

  • Kim, Beom-Ju (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Sharma, Pankaj (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Han, Moon-Hee (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Cho, Churl-Hee (Graduate School of Energy Science and Technology, Chungnam National University)
  • 김범주 (충남대학교 에너지과학기술대학원) ;
  • ;
  • 한문희 (충남대학교 에너지과학기술대학원) ;
  • 조철희 (충남대학교 에너지과학기술대학원)
  • Received : 2014.10.21
  • Accepted : 2014.12.04
  • Published : 2014.12.31

Abstract

In the present study, pure RHO zeolite was hydrothermally synthesized by using 18-crown-6 ether as a structure directing agent(SDA), and the small gases adsorption was investigated. Synthesized RHO zeolite was a cube shape particle of which average edge length was around $1.2{\mu}m$ and composed of primary crystallites having a diameter of around 100 to 200 nm. RHO zeolite structure was stable under 3h calcination at $600^{\circ}C$. Water adsorption data announced that RHO zeolite has a specific surface area of 483.32 m2/g and its micropore diameter was about 4 A. Gas adsorption was studied in the pressure range of 50 to 500 kPa for $CO_2$, $N_2$, $O_2$ and $H_2$. It was evident that RHO zeolite showed a strong $CO_2$ adsorption behavior. Especially, RHO zeolite showed a transient $CO_2$ adsorption behavior. The 3h $CO_2$ up-take at 50 kPa and 500 kPa was 1.283 and 3.357 mmol/g, respectively. The $CO_2/H_2$ selectivity was around 16 at 500 kPa. Compared with gas adsorption data for some representative microporous adsorbents, it was certain that RHO zeolite is a beneficial adsorbent for $CO_2/H_2$ separation.

본 연구에서는 구조유도물질인 18-crown-6 ether를 이용하여 순수한 RHO 제올라이트 입자를 합성하고, $N_2$, $CO_2$, $H_2$, $O_2$ 등 작은 기체 흡착 거동을 고찰하였다. 순수한 RHO 제올라이트 입자는 세슘이온이 함유된 알루미노실리케이트 겔로부터 합성되었으며, 직경 100-200 nm 크기의 일차입자로 구성된 약 $1.2{\mu}m$ 크기의 정육면체 모양의 이차입자이었다. 합성된 RHO 제올라이트 입자는 $600^{\circ}C$에서 3시간 하소 공정에서도 구조적으로 안정하였으며 수증기 흡착 실험으로부터 비표면적이 483.32 m2/g이고 마이크로 기공직경이 약 $4{\AA}$임을 확인할 수 있었다. RHO 제올라이트에 대한 $N_2$, $CO_2$, $H_2$, $O_2$ 흡착은 50-500 kPa의 압력 범위에서 이루어졌으며, $N_2$, $H_2$, $O_2$에 비하여 $CO_2$에 강한 흡착거동을 보였다. 특히, $CO_2$ 흡착은 모든 압력에서 시간 의존적이었으며 이는 기존에 알려진 RHO 제올라이트의 구조 변화로 설명할 수 있었다. 일정 압력에서 약 3시간 동안 유지하여 측정된 $CO_2$ 흡착량은 50 kPa과 500 kPa에서 각각 1.283 mmol/g과 3.357 mmol/g이었고, 500 kPa에서의 $CO_2/H_2$ 흡착 선택도는 15.77 이었다. 기존 가스 흡착제의 흡착 성능과 비교한 결과, 합성된 RHO 제올라이트는 $CO_2/H_2$ 분리에 유용할 것으로 판단되었다.

Keywords

Acknowledgement

Supported by : 충남대학교

References

  1. ROBSON, H. E.; SHOEMAKER, D. P.; OGILVIE, R. A.; MANOR, P. C. Synthesis and crystal structure of zeolite rho-a new zeolite related to linde type A, 1973
  2. Parise, J. B.; Prince, E. The structure of cesium-exchanged zeolite-RhO at 293K and 493K determined from high resolution neutron powder data, Materials Research Bulletin 1983, 18 (7), 841-852 https://doi.org/10.1016/0025-5408(83)90062-4
  3. Abrams, L.; Corbin, D. R.; Keane Jr, M. Synthesis of dimethylamine by zeolite Rho: A rational basis for selectivity, Journal of Catalysis 1990, 126 (2), 610-618 https://doi.org/10.1016/0021-9517(90)90024-E
  4. Corbin, D. R.; Schwarz, S.; Sonnichsen, G. C. Methylamines synthesis: A review, Catalysis today 1997, 37 (2), 71-102 https://doi.org/10.1016/S0920-5861(97)00003-5
  5. Callanan, L. H.; vanSteen, E.; O'Connor, C. T. Improved selectivity to lower substituted methylamines using hydrothermally treated zeolite Rho, Catalysis today 1999, 49 (1), 229-235 https://doi.org/10.1016/S0920-5861(98)00428-3
  6. Callanan, L .H.; O'Connor, C. T.; van Steen, E. The effect of the adsorption properties of steamed zeolite rho on its methanol amination activity, Microporous and Mesoporous Materials 2000, 35, 163-172
  7. Jeon, H.-Y.; Shin, C.-H.; Jung, H.J.; Hong, S. B. Catalytic evaluation of small-pore molecular sieves with different framework topologies for the synthesis of methylamines, Applied Catalysis A: General 2006, 305 (1), 70-78 https://doi.org/10.1016/j.apcata.2006.02.044
  8. Krishnan, V. V.; Suib, S. L.; Corbin, D. R.; Schwarz, S.; Jones, G. E. Encapsulation studies of hydrogen on cadmium exchanged zeolite rho at atmospheric pressure, Catalysis today 1996, 31 (3), 199-205 https://doi.org/10.1016/S0920-5861(96)00024-7
  9. Langmi, H.; Walton, A.; Al-Mamouri, M.; Johnson, S.; Book, D.; Speight, J.; Edwards, P.; Gameson, I.; Anderson, P.; Harris, I. Hydrogen adsorption in zeolites A, X, Y and RHO, Journal of alloys and compounds 2003, 356, 710-715
  10. Merz, C.; Fetting, F. Synthese des Zeoliths RHO, Chemie Ingenieur Technik 1994, 66 (5), 730-732 https://doi.org/10.1002/cite.330660524
  11. Chatelain, T.; Patarin, J.; Fousson, E.; Soulard, M.; Guth, J.; Schulz, P. Synthesis and characterization of high-silica zeolite RHO prepared in the presence of 18-crown-6 ether as organic template, Microporous Materials 1995, 4 (2), 231-238 https://doi.org/10.1016/0927-6513(95)00009-X
  12. Araki, S.; Kiyohara, Y.; Tanaka, S.; Miyake, Y. Crystallization process of zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether as organic template, Journal of colloid and interface science 2012, 376 (1), 28-33 https://doi.org/10.1016/j.jcis.2012.02.038
  13. Araki, S.; Kiyohara, Y.; Tanaka, S.; Miyake, Y. Adsorption of carbon dioxide and nitrogen on zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether, Journal of colloid and interface science 2012, 388 (1), 185-190 https://doi.org/10.1016/j.jcis.2012.06.061
  14. Palomino, M.; Corma, A.; Jorda, J. L.; Rey, F.; Valencia, S. Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification, Chemical Communications 2012, 48 (2), 215-217 https://doi.org/10.1039/C1CC16320E
  15. Lozinska, M. M.; Mowat, J. P.; Wright, P. A.; Thompson, S. P.; Jorda, J. L.; Palomino, M.; Valencia, S.; Rey, F. Cation Gating and Relocation during the Highly Selective "Trapdoor" Adsorption of CO2 on Univalent Cation Forms of Zeolite Rho, Chemistry of Materials 2014, 26 (6), 2052-2061 https://doi.org/10.1021/cm404028f
  16. Masih, D.; Imai, H.; Yokoi, T.; Kondo, J. N.; Tatsumi, T. Methanol conversion to lower olefins over RHO type zeolite, Catalysis Communications 2013, 37, 1-4 https://doi.org/10.1016/j.catcom.2013.03.023
  17. Lozinska, M. M.; Mangano, E.; Mowat, J. P.; Shepherd, A. M.; Howe, R. F.; Thompson, S. P.; Parker, J. E.; Brandani, S.; Wright, P. A. Understanding Carbon Dioxide Adsorption on Univalent Cation Forms of the Flexible Zeolite Rho at Conditions Relevant to Carbon Capture from Flue Gases, Journal of the American Chemical Society 2012, 134 (42), 17628-17642 https://doi.org/10.1021/ja3070864
  18. Schell, J.; Casas, N.; Blom, R.; Spjelkavik, A. I.; Andersen, A.; Cavka, J. H.; Mazzotti, M. MCM-41, MOF and UiO-67/MCM-41 adsorbents for pre-combustion CO2 capture by PSA: adsorption equilibria, Adsorption 2012, 18 (3-4), 213-227 https://doi.org/10.1007/s10450-012-9395-1
  19. Belmabkhout, Y.; Pirngruber, G.; Jolimaitre, E.; Methivier, A. A complete experimental approach for synthesis gas separation studies using static gravimetric and column breakthrough experiments, Adsorption 2007, 13 (3-4), 341-349 https://doi.org/10.1007/s10450-007-9032-6
  20. Sharma, P.; Yeo, J.-g.; Han, M. H.; Cho, C. H. Knobby surfaced, mesoporous, single-phase GIS-NaP1 zeolite microsphere synthesis and characterization for H 2 gas adsorption, Journal of Materials Chemistry A 2013, 1 (7), 2602-2612 https://doi.org/10.1039/c2ta01311h
  21. Rother, J.; Fieback, T. Multicomponent adsorption measurements on activated carbon, zeolite molecular sieve and metal-organic framework, Adsorption 2013, 19 (5), 1065-1074 https://doi.org/10.1007/s10450-013-9527-2
  22. Fujiwara, M.; Fujio, Y.; Sakurai, H.; Senoh, H.; Kiyobayashi, T. Storage of molecular hydrogen into ZSM-5 zeolite in the ambient atmosphere by the sealing of the micropore outlet, Chemical Engineering and Processing: Process Intensification 2014, 79, 1-6 https://doi.org/10.1016/j.cep.2014.02.010
  23. Makarova, M. A.; Zholobenko, V. L.; Al-Ghefaili, K. M.; Thompson, N. E.; Dewing, J.; Dwyer, J. Bronsted acid sites in zeolites. FTIR study of molecular hydrogen as a probe for acidity testing, Journal of the Chemical Society, Faraday Transactions 1994, 90 (7), 1047-1054 https://doi.org/10.1039/ft9949001047
  24. Rowsell, J. L.; Millward, A. R.; Park, K. S.; Yaghi, O. M. Hydrogen sorption in functionalized metal-organic frameworks, Journal of the American Chemical Society 2004, 126 (18), 5666-5667 https://doi.org/10.1021/ja049408c
  25. Cai, J.; Qi, J.; Yang, C.; Zhao, X. Poly (vinylidene chloride)-Based Carbon with Ultrahigh Microporosity and Outstanding Performance for CH4 and H2 Storage and CO2 Capture, ACS applied materials & interfaces 2014, 6 (5), 3703-3711 https://doi.org/10.1021/am500037b