DOI QR코드

DOI QR Code

Recent Researches for Diatom as Inorganic and Bioenvironmental Materials

무기소재 및 생물환경 소재로서의 규조류 활용 연구 동향

  • Jang, Eui Kyoung (Department of Biotechnology and Bioinformatics, Korea University) ;
  • Shin, Hyun Kyeong (Department of Biotechnology and Bioinformatics, Korea University) ;
  • Pack, Seung Pil (Department of Biotechnology and Bioinformatics, Korea University)
  • 장의경 (고려대학교 생명정보공학과) ;
  • 신현경 (고려대학교 생명정보공학과) ;
  • 백승필 (고려대학교 생명정보공학과)
  • Received : 2013.12.17
  • Accepted : 2014.02.07
  • Published : 2014.02.27

Abstract

One of the most abundant microalgaes, diatom is characterized by its unique cell wall structures composed of nano-patterned silica. Due to its highly ordered porosity, these silica frustules, which are found as sediments called diatomite, were used as a cheap adsorption material for water purification. Recently, new emerging nanotechnology compels many researchers to have interest in such diatom's unique properties (eg, nano-scale mesoporosity, photo luminescence, light transparency, etc.) as biogenic inorganic materials as well as the biomass resource (conventional usage of microalgae). In this review, we will focus on the current knowledge about the diatoms research and the possibility of its applications.

Keywords

References

  1. Field, C. B., M. J. Behrenfeld, J. T. Randerson, and P. Falkowski (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237-240. https://doi.org/10.1126/science.281.5374.237
  2. Grachev, M. A., V. V. Annenkov, and Y. V. Likhoshway (2008) Silicon nanotechnologies of pigmented heterokonts. BioEssays: news and reviews in molecular, cellular and developmental biology, 30: 328-337. https://doi.org/10.1002/bies.20731
  3. Round, F. E. (1990) Diatom Communities - Their Response to Changes in Acidity. Philos. T Roy. Soc. B, 327: 243-249. https://doi.org/10.1098/rstb.1990.0059
  4. Alverson, A. J., J. J. Cannone, R. R. Gutell, and E. C. Theriot (2006) The evolution of elongate shape in diatoms. J. Phycol. 42: 655-668. https://doi.org/10.1111/j.1529-8817.2006.00228.x
  5. Treguer, P., D. M. Nelson, A. J. Vanbennekom, D. J. Demaster, A. Leynaert, and B. Queguiner (1995) The silica balance in the world Ocean - a Reestimate. Science 268: 375-379. https://doi.org/10.1126/science.268.5209.375
  6. Hildebrand, M., B. E. Volcani, W. Gassmann, and J. I. Schroeder (1997) A gene family of silicon transporters. Nature 385: 688-689.
  7. Drum, R. W. and H. S. Pankratz (1964) Post mitotic fine structure of Gomphonema Parvulum. J. Ultra Mol. Struct. R, 10: 217-223. https://doi.org/10.1016/S0022-5320(64)80006-X
  8. Parkinson, J. and R. Gordon (1999) Beyond micromachining: the potential of diatoms. Trends Biotechnol. 17: 190-196. https://doi.org/10.1016/S0167-7799(99)01321-9
  9. Hecky, R. E., K. Mopper, P. Kilham, and E. T. Degens (1973) Amino-Acid and Sugar Composition of Diatom Cell-Walls. Mar. Biol. 19: 323-331. https://doi.org/10.1007/BF00348902
  10. Shimizu, K., J. Cha, G. D. Stucky, and D. E. Morse (1998) Silicatein alpha: Cathepsin L-like protein in sponge biosilica. Proceedings of the National Academy of Sciences of the United States of America, 95: 6234-6238.
  11. Kroger, N., C. Bergsdorf, and M. Sumper (1994) A new calciumbinding glycoprotein family constitutes a major diatom cell-wall component. Embo. J. 13: 4676-4683.
  12. Kroger, N., R. Deutzmann, and M. Sumper (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286: 1129-1132. https://doi.org/10.1126/science.286.5442.1129
  13. Sumper, M. (2004) Biomimetic patterning of silica by long-chain polyamines. Angew. Chem. Int. Edit. 43: 2251-2254. https://doi.org/10.1002/anie.200453804
  14. Borowitzka, M. A. (1992) Algal biotechnology products and processes - Matching science and economics. J. Appl. Phycol. 4: 267-279. https://doi.org/10.1007/BF02161212
  15. Dunahay, T. G., E. E. Jarvis, S. S. Dais, and P. G. Roessler (1996) Manipulation of microalgal lipid production using genetic engineering. Appl. Biochem. Biotechnol. 57-8: 223-231.
  16. Tonon, T., D. Harvey, T. R. Larson, and I. A. Graham (2002) Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61: 15-24. https://doi.org/10.1016/S0031-9422(02)00201-7
  17. Lebeau, T. and J. M. Robert (2003) Diatom cultivation and biotechnologically relevant products. Part II: Current and putative products. Appl. Microbiol. Biot. 60: 624-632. https://doi.org/10.1007/s00253-002-1177-3
  18. Lebeau, T. and J. M. Robert (2003) Diatom cultivation and biotechnologically relevant products. Part I: Cultivation at various scales. Appl. Microbiol. Biot. 60: 612-623. https://doi.org/10.1007/s00253-002-1176-4
  19. Evenson, W. E., S. R. Rushforth, J. D. Brotherson, and N. Fungladda (1981) The effects of selected physical and chemical factors on attached diatoms in the uintah basin of Utah, USA. Hydrobiologia 83: 325-330. https://doi.org/10.1007/BF00008283
  20. Leterme, S. C., E. Prime, J. Mitchell, M. H. Brown, and A. V. Ellis (2013) Diatom adaptability to environmental change: A case study of two Cocconeis species from high-salinity areas. Diatom. Res. 28: 29-35. https://doi.org/10.1080/0269249X.2012.734530
  21. Wu, J. T. (1999) A generic index of diatom assemblages as bioindicator of pollution in the Keelung River of Taiwan. Hydrobiologia 397: 79-87. https://doi.org/10.1023/A:1003694414751
  22. Watanabe, T., K. Asai, and A. Houki (1986) Numerical estimation to organic pollution of flowing water by using the epilithic diatom assemblage - Diatom assemblage index (Daipo). Sci. Total Environ. 55: 209-218. https://doi.org/10.1016/0048-9697(86)90180-4
  23. Kelly, M. G. and B. A. Whitton (1995) Trophic diatom index - A new index for monitoring eutrophication in rivers. J. Appl. Phycol. 7: 433-444. https://doi.org/10.1007/BF00003802
  24. Sladecek, V. (1986) Diatoms as indicators of organic pollution. Acta Hydroch. Hydrob. 14: 555-566. https://doi.org/10.1002/aheh.19860140519
  25. Passy, S. I. and R. W. Bode (2004) Diatom model affinity (DMA), a new index for water quality assessment. Hydrobiologia 524: 241-251. https://doi.org/10.1023/B:HYDR.0000036143.60578.e0
  26. Perales-Vela, H. V., J. M. Pena-Castro, and R. O. Canizares-Villanueva (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64: 1-10. https://doi.org/10.1016/j.chemosphere.2005.11.024
  27. Vatamaniuk, O. K., S. Mari, Y. P. Lu,. and P. A. Rea (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase - Blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J. Biol. Chem. 275: 31451-31459. https://doi.org/10.1074/jbc.M002997200
  28. Fehrmann, C. and P. Pohl (1993) Cadmium adsorption by the nonliving biomass of microalgae grown in axenic mass-culture. J. Appl. Phycol. 5: 555-562. https://doi.org/10.1007/BF02184634
  29. Parida, S. K., S. Dash, S. Patel, and B. K. Mishra (2006) Adsorption of organic molecules on silica surface. Adv. Colloid. Interfac. 121: 77-110. https://doi.org/10.1016/j.cis.2006.05.028
  30. Yu, Y., J. Addai-Mensah, and D. Losic (2012) Functionalized diatom silica microparticles for removal of mercury ions. Sci. Technol. Adv. Mat. 13: 015008. https://doi.org/10.1088/1468-6996/13/1/015008
  31. Losic, D., J. G. Mitchell, and N. H. Voelcker (2009) Diatomaceous Lessons in Nanotechnology and Advanced Materials. Adv. Mater. 21: 2947-2958. https://doi.org/10.1002/adma.200803778
  32. Shingubara, S. (2003) Fabrication of nanomaterials using porous alumina templates. J. Nanopart. Res. 5: 17-30. https://doi.org/10.1023/A:1024479827507
  33. Rosi, N. L., C. S. Thaxton, and C. A. Mirkin (2004) Control of nanoparticle assembly by using DNA-modified diatom templates. Angew. Chem. Int. Edit. 43: 5500-5503. https://doi.org/10.1002/anie.200460905
  34. Payne, E. K., N. L. Rosi, C. Xue, and C. A. Mirkin (2005) Sacrificial biological templates for the formation of nanostructured metallic microshells. Angew. Chem. Int. Edit. 44: 5064-5067. https://doi.org/10.1002/anie.200500988
  35. Jeanmaire, D. L. and R. P. Vanduyne (1977) Surface raman spectroelectrochemistry. 1. heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J. Electroanal. Chem. 84: 1-20. https://doi.org/10.1016/S0022-0728(77)80224-6
  36. Losic, D., J. G. Mitchell, and N. H. Voelcker (2006) Fabrication of gold nanostructures by templating from porous diatom frustules. New. J. Chem. 30: 908-914. https://doi.org/10.1039/b600073h
  37. Bao, Z. H., M. K. Song, S. C. Davis, Y. Cai, M. L. Liu, and K. H. Sandhage (2011) High surface area, micro/mesoporous carbon particles with selectable 3-D biogenic morphologies for tailored catalysis, filtration, or adsorption. Energ. Environ. Sci. 4: 3980-3984. https://doi.org/10.1039/c1ee02102h
  38. Davis, S. C., V. C. Sheppard, G. Begum, Y. Cai, Y. N. Fang, J. D. Berrigan, N. Kroger, and K. H. Sandhage (2013) Rapid flowthrough biocatalysis with high surface area, enzyme-loaded carbon and gold-bearing diatom frustule replicas. Adv. Funct. Mater. 23: 4611-4620. https://doi.org/10.1002/adfm.201203758
  39. Hoffmann, M. R., S. T. Martin, W. Y. Choi, and D. W. Bahnemann (1995) Environmental applications of semiconductor photocatalysis. Chem. Rev. 95: 69-96. https://doi.org/10.1021/cr00033a004
  40. De Stefano, L., L. Rotiroti, M. De Stefano, A. Lamberti, S. Lettieri, A. Setaro, and P. Maddalena (2009) Marine diatoms as optical biosensors. Biosens. Bioelectron. 24: 1580-1584. https://doi.org/10.1016/j.bios.2008.08.016
  41. Park, K. H., H. B. Gu, E. M. Jin, and M. Dhayal (2010) Using hybrid silica-conjugated $TiO_2$ nanostructures to enhance the efficiency of dye-sensitized solar cells. Electrochim. Acta 55: 5499-5505. https://doi.org/10.1016/j.electacta.2010.04.100
  42. Kanjilal, A., J. L. Hansen, P. Gaiduk, A. N. Larsen, N. Cherkashin, A. Claverie, P. Normand, E. Kapelanakis, D. Skarlatos, and E. Tsoukalas (2003) Structural and electrical properties of silicon dioxide layers with embedded germanium nanocrystals grown by molecular beam epitaxy. Appl. Phys. Lett. 82: 1212-1214. https://doi.org/10.1063/1.1555709
  43. Zacharias, M. and P. M. Fauchet (1997) Blue luminescence in films containing Ge and $GeO_2$ nanocrystals: The role of defects. Appl. Phys. Lett. 71: 380-382. https://doi.org/10.1063/1.119543
  44. Sandhage, K. H., M. B. Dickerson, P. M. Huseman, M. A. Caranna, J. D. Clifton, T. A. Bull, T. J. Heibel, W. R. Overton, and M. E. A. Schoenwaelder (2002) Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: Shape-preserving reactive conversion of biosilica (diatom) microshells. Adv. Mater. 14: 429-433. https://doi.org/10.1002/1521-4095(20020318)14:6<429::AID-ADMA429>3.0.CO;2-C
  45. Jeffryes, C., T. Gutu, J. Jiao, and G. L. Rorrer (2008) Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp. Mat. Sci. Eng. C-Bio. S, 28: 107-118. https://doi.org/10.1016/j.msec.2007.01.002
  46. Darley, W. M. and B. E. Volcani (1969) Role of silicon in diatom metabolism. a silicon requirement for deoxyribonucleic acid synthesis in diatom cylindrotheca-fusiformis Reimann and Lewin. Exp. Cell Res. 58: 334-342. https://doi.org/10.1016/0014-4827(69)90514-X
  47. Mascolo, G., R. Ciannarella, L. Balest, and A. Lopez (2008) Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: A laboratory investigation. J. Hazard Mater. 152: 1138-1145. https://doi.org/10.1016/j.jhazmat.2007.07.120
  48. Farooq, M., I. A. Raja, and A. Pervez (2009) Photocatalytic degradation of TCE in water using $TiO_2$ catalyst. Sol. Energy, 83: 1527-1533. https://doi.org/10.1016/j.solener.2009.04.009
  49. Jeffryes, C., T. Gutu, J. Jiao, and G. L. Rorrer (2008) Metabolic insertion of nanostructured $TiO_2$ into the patterned biosilica of the diatom pinnularia sp by a two-stage bioreactor cultivation process. Acs. Nano. 2: 2103-2112. https://doi.org/10.1021/nn800470x
  50. Lang, Y., F. del Monte, B. J. Rodriguez, P. Dockery, D. P. Finn, and A. Pandit (2013) Integration of $TiO_2$ into the diatom Thalassiosira weissflogii during frustule synthesis. Sci. Rep-Uk, 3: 3205. https://doi.org/10.1038/srep03205
  51. Bismuto, A., A. Setaro, P. Maddalena, L. De Stefano, and M. De Stefano (2008) Marine diatoms as optical chemical sensors: A timeresolved study. Sensor Actuat B-Chem. 130: 396-399. https://doi.org/10.1016/j.snb.2007.09.012
  52. Gale, D. K., T. Gutu, J. Jiao, C. H. Chang, and G. L. Rorrer (2009) Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica. Adv. Funct. Mater. 19: 926-933. https://doi.org/10.1002/adfm.200801137
  53. Lin, K. C., V. Kunduru, M. Bothara, K. Rege, S. Prasad, and B. L. Ramakrishna (2010) Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins. Biosens. Bioelectron. 25: 2336-2342. https://doi.org/10.1016/j.bios.2010.03.032
  54. Losic, D., Y. Yu, M. S. Aw, S. Simovic, B. Thierry, and J. Addai- Mensah (2010) Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies. Chem. Commun. 46: 6323-6325. https://doi.org/10.1039/c0cc01305f
  55. Aw, M. S., M. Bariana, Y. Yu, J. Addai-Mensah, and D. Losic (2013) Surface-functionalized diatom microcapsules for drug delivery of water-insoluble drugs. J. Biomater. Appl., 28: 163-174. https://doi.org/10.1177/0885328212441846
  56. Gordon, R., D. Losic, M. A. Tiffany, S. S. Nagy, and F. A. S. Sterrenburg (2009) The glass menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol. 27: 116-127. https://doi.org/10.1016/j.tibtech.2008.11.003
  57. Poulsen, N. and N. Kroger (2006) Molecular genetic approaches to studying silica biomineralization in diatoms. J. Phycol. 42: 6-6. https://doi.org/10.1111/j.1529-8817.2005.00187.x
  58. Armbrust, E. V., J. A. Berges, C. Bowler, B. R. Green, D. Martinez, N. H. Putnam, S. G. Zhou, A. E. Allen, K. E. Apt, M. Bechner, et al. (2004) The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 306: 79-86. https://doi.org/10.1126/science.1101156
  59. Montsant, A., K. Jabbari, U. Maheswari, and C. Bowler (2005) Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol. 137: 500-513. https://doi.org/10.1104/pp.104.052829
  60. Apt, K.E., P. G. Kroth-Pancic, and A. R. Grossman (1997) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Phycologia 36: 3-3.
  61. Fischer, H., I. Robl, M. Sumper, and N. Kroger (1999) Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (Bacillariophyceae). J. Phycol. 35: 113-120. https://doi.org/10.1046/j.1529-8817.1999.3510113.x
  62. Dunahay, T. G., E. E. Jarvis, and P. G. Roessler (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J. Phycol. 31: 1004-1012. https://doi.org/10.1111/j.0022-3646.1995.01004.x
  63. Poulsen, N., P. M. Chesley, and N. Kroger (2006) Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J. Phycol. 42: 1059-1065. https://doi.org/10.1111/j.1529-8817.2006.00269.x
  64. Sheppard, V. C., A. Scheffel, N. Poulsen, and N. Kroger (2012) Live diatom silica immobilization of multimeric and redox-active enzymes. Appl. Environ. Microb. 78: 211-218. https://doi.org/10.1128/AEM.06698-11
  65. Scheffel, A., N. Poulsen, S. Shian, and N. Kroger (2011) Nanopatterned protein microrings from a diatom that direct silica morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 108: 3175-3180.
  66. Bradbury, J. (2004) Nature's nanotechnologists: Unveiling the secrets of diatoms. Plos Biol. 2: 1512-1515.

Cited by

  1. Progress in Method and Reliability of Diatom Test in Drowning vol.44, pp.3, 2014, https://doi.org/10.7580/kjlm.2020.44.3.115