DOI QR코드

DOI QR Code

Recent Advances in Tyrosinase Research as An Industrial Enzyme

산업용 효소로써 티로시나아제 연구의 최근 동향

  • Kim, Hyerin (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, Hyunmi (Department of Chemical Engineering, Chungnam National University) ;
  • Choi, Yoo Seong (Department of Chemical Engineering, Chungnam National University)
  • Received : 2014.01.09
  • Accepted : 2014.02.07
  • Published : 2014.02.27

Abstract

Tyrosinases catalyze the hydroxylation of monophenolic compounds and the conversion of o-diphenols to oquinones. The enzymes are mainly involved in the modification of tyrosine into L-3,4-dihydroxyphenyl-alanine (L-DOPA) and DOPA/DOPAquinone-drived intermolecular cross-linking, which play the key roles of pigmentation to the cells. It is ubiquitously distributed in microorganisms, plants, and animals all around the nature world. They are classified as copper- containing dioxygen activating enzymes; two copper ions are coordinated with six histidine residues in their active sites and they are distinguished as met-, deoxy-, and oxy-form depending on their oxidative states. Natural extraction and recombinant protein approaches have been tried to obtain practical amounts of the enzymes for industrial application. Tyrosinases have been widely applied to industrial and biomedical usages such as detoxification of waste water containing phenolic compounds, L-DOPA as a drug of Parkinson's disease, biomaterials preparation based on the cross-linking ability and biosensors for the detection of phenolic compounds. Therefore, this review reports the mechanism of tyrosinase, biochemical and structural features and potential applications in industrial field.

Keywords

References

  1. Fairhead, M. and L. Thony-Meyer (2012) Bacterial tyrosinases: Old enzymes with new relevance to biotechnology. Nat. Biotechnol. 29: 183-191.
  2. Solomon, E. I., U. M. Sundaram, and T. E. Machonkin (1996) Multicopper oxidases and oxygenases. Chem. Rev. 96: 2563-2606. https://doi.org/10.1021/cr950046o
  3. Geng, J., S. B. Yu, X. Wan, X. J. Wang, P. Shen, P. Zhou, and X. D. Chen (2008) Protective action of bacterial melanin against DNA damage in full UV spectrums by a sensitive plasmid-based noncellular system. J. Biochem. Biophys. Methods. 70: 1151-1155. https://doi.org/10.1016/j.jprot.2007.12.013
  4. Garcia-Rivera, J., and A. Casadevall (2001) Melanization of cryptococcus neoformans reduces its susceptibility to the antimicrobial effects of silver nitrate. Med. Mycol. 39: 353-357. https://doi.org/10.1080/mmy.39.4.353.357
  5. Pawelek, J. M. and A. M. Korner (1982) The biosynthesis of mammalian melanin. Am. Sci. 70: 136-145.
  6. Van Gelder, C. W., W. H. Flurkey, and H. J. Wichers (1997) Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 45: 1309-1323. https://doi.org/10.1016/S0031-9422(97)00186-6
  7. Prota, G. (1980) Recent advances in the chemistry of melanogenesis in mammals. J. Invest. Dermatol. 75: 122-127. https://doi.org/10.1111/1523-1747.ep12521344
  8. Garcia-Borron, J. C. and F. Solano (2002) Molecular anatomy of tyrosinase and its related proteins: Beyond the histidine-bound metal catalytic center. Pigment Cell. Res. 15: 162-173. https://doi.org/10.1034/j.1600-0749.2002.02012.x
  9. Lerch, K. and L. Ettinger (1972) Purification and characterization of a tyrosinase from Streptomyces glaucescens. Eur. J. Biochem. 31: 427-437. https://doi.org/10.1111/j.1432-1033.1972.tb02549.x
  10. Pinero, S., J. Rivera, D. Romero, M. A. Cevallos, A. Martinez, F. Bolivar, and G. Gosset (2007) Tyrosinase from Rhizobium etli is involved in nodulation efficiency and symbiosis-associated stress resistance. J. Mol. Microbiol. Biotechnol. 13: 35-44. https://doi.org/10.1159/000103595
  11. Michalik, J., W. Emilianowicz-Czerska, L. Switalski, and K. Raczynska- Bojanowska (1975) Monophenol monooxygenase and lincomysin biosynthesis in Streptomyces lincolnensis. Antimicrob. Agents Chemother. 8: 526-531. https://doi.org/10.1128/AAC.8.5.526
  12. Streffer, K., E. Vijgenboom, A. W. J. W. Tepper, A. Makower, F. W. Scheller, G. W. Canters, and U. Wollenberger (2001) Determination of phenolic compounds using recombinant tyrosinase from Streptomyces antibioticus. Anal. Chim. Acta. 427: 201-210. https://doi.org/10.1016/S0003-2670(00)01040-0
  13. Lewandowski, A. T., D. A. Small, T. Chen, G. F. Payne, and W. E. Bentley (2006) Tyrosine-based "activatable pro-tag": Enzyme-catalyzed protein capture and release. Biotechnol. Bioeng. 93: 1207-1215. https://doi.org/10.1002/bit.20840
  14. Claus, H., and H. Decker (2006) Bacterial tyrosinases. Syst. Appl. Microbiol. 29: 3-14. https://doi.org/10.1016/j.syapm.2005.07.012
  15. Likhitwitayawuid, K. (2008) Stilbenes with tyrosinase inhibitory activity. Curr. Sci. India 94: 44-52.
  16. Faccio, G., K. Kruus, M. Saloheimo, and L. Thony-Meyer (2012) Bacterial tyrosinases and their applications. Process Biochem. 47: 1749-1760. https://doi.org/10.1016/j.procbio.2012.08.018
  17. Chang, T. S. (2009) An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 10: 2440-2475. https://doi.org/10.3390/ijms10062440
  18. Yang, H. Y., and C. W. Chen (2009) Extracellular and intracellular polyphenol oxidases cause opposite effects on sensitivity of Streptomyces to phenolics: A case of double-edged sword. PLoS One. 4: e7462. https://doi.org/10.1371/journal.pone.0007462
  19. Kong, K. H., M. P. Hong, S. S. Choi, Y. T. Kim, and S. H. Cho (2000) Purification and characterization of a highly stable tyrosinase from Thermomicrobium roseum. Biotechnol. Appl. Bioc. 31: 113-118. https://doi.org/10.1042/BA19990096
  20. Shuster, V., and A. Fishman (2009) Isolation, cloning and characterization of a tyrosinase with improved activity in organic solvents from Bacillus megaterium. J. Mol. Microb. Biotech. 17: 188-200. https://doi.org/10.1159/000233506
  21. Betancourt, A. M., V. Bernan, W. Herber, and E. Katz (1992) Analysis of tyrosinase synthesis in Streptomyces antibioticus. J. Gen. Microbiol. 138: 787-794. https://doi.org/10.1099/00221287-138-4-787
  22. Kohashi, P. Y., T. Kumagai, Y. Matoba, A. Yamamoto, M. Maruyama, and M. Sugiyama (2004) An efficient method for the overexpression and purification of active tyrosinase from Streptomyces castaneoglobisporus. Protein Expres. Purif. 34: 202-207. https://doi.org/10.1016/j.pep.2003.11.015
  23. Sendovski, M., M. Kanteev, V. S. Ben-Yosef, N. Adir, and A. Fishman (2010) Crystallization and preliminary X-ray crystallographic analysis of a bacterial tyrosinase from Bacillus megaterium. Acta Crystallogr, F. 66: 1101-1103. https://doi.org/10.1107/S1744309110031520
  24. Fairhead, M., and L. Thony-Meyer (2010) Role of the C-terminal extension in a bacterial tyrosinase. FEBS J. 277: 2083-2095. https://doi.org/10.1111/j.1742-4658.2010.07621.x
  25. Flurkey, W. H., and J. K. Inlow (2008) Proteolytic processing of polyphenol oxidase from plants and fungi. J. Inorg. Biochem. 102: 2160-2170. https://doi.org/10.1016/j.jinorgbio.2008.08.007
  26. Liu, N., T. Zhang, Y. J. Wang, Y. P. Huang, J. H. Ou, and P. Shen (2004) A heat inducible tyrosinase with distinct properties from Bacillus thuringiensis. Lett. Appl. Microbiol. 39: 407-412. https://doi.org/10.1111/j.1472-765X.2004.01599.x
  27. Sanchez-Amat, A., P. Lucas-Elio, E. Fernandez, J. C. Garcia-Borron, and F. Solano (2001) Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim. Biophia. Acat. 1547: 104-116. https://doi.org/10.1016/S0167-4838(01)00174-1
  28. Sakurai, T., and K. Kataoka (2007) Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem. Rec. 7: 220-229. https://doi.org/10.1002/tcr.20125
  29. Matoba, Y., T. Kumagai, A. Yamamoto, H. Yoshitsu, and M. Sugiyama (2006) Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J. Biol. Chem. 281: 8981-8990. https://doi.org/10.1074/jbc.M509785200
  30. Matoba, Y., N. Bando, K. Oda, M. Noda, F. Higashikawa, T. Kumagai, and M. Suqiyama (2011) A molecular mechanism for copper transportation to tyrosinase that is assisted by a metallochaperone, caddie protein. J. Biol. Chem. 286: 30219-30231. https://doi.org/10.1074/jbc.M111.256818
  31. De Faria, R. O., V. R. Moure, M. A. L. D. Amazonas, N. Krieger, and D. A. Mitchell (2007) The biotechnological potential of mushroom tyrosinases. Food Technol. Biotech. 45: 287-294.
  32. Halaouli, S., M. Asther, K. Kruus, L. Guo, M. Hamdi, J. C. Sigoillot, M. Asther, and A. Lomascolo (2005) Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological applications. J. Appl. Microbiol. 98: 332-343. https://doi.org/10.1111/j.1365-2672.2004.02481.x
  33. Selinheimo, E., M. Saloheimo, E. Ahola, A. Westerholm-Parvinen, N. Kalkkinen, J. Buchert, and K. Kruus (2006) Production and characterization of a secreted, C-terminally processed tyrosinase from the filamentous fungus Trichoderma reesei. FEBS J. 273: 4322-4335. https://doi.org/10.1111/j.1742-4658.2006.05429.x
  34. Dolashki, A., A. Gushterova, W. Voelter, and B. Tchorbanov (2009) Purification and characterization of tyrosinases from Streptomyces albus. Z. Naturforsch C. 64: 724-732.
  35. Bubacco, L., E. Vijgenboom, C. Gobin, A. W. J. W. Tepper, J. Salgado, and G. W. Canters (2000) Kinetic and paramagnetic NMR investigations of the inhibition of Streptomyces antibioticus tyrosinase. J. Mol. Catal. B. - Enzym. 8: 27-35. https://doi.org/10.1016/S1381-1177(99)00064-8
  36. Ito, M, and K. Inouye (2005) Catalytic properties of an organic solvent-resistant tyrosinase from Streptomyces sp REN-21 and its high-level production in E. coli. J. Biochem. 138: 355-362. https://doi.org/10.1093/jb/mvi150
  37. Plonka, P. M. and M. Grabacka (2006) Melanin synthesis in microorganisms - biotechnological and medical aspects. Acta Biochim. Pol. 53: 429-443.
  38. Menter, J. M., and I. Willis (1997) Electron transfer and photoprotective properties of melanins in solution. Pigm. Cell Res. 10: 214-217. https://doi.org/10.1111/j.1600-0749.1997.tb00487.x
  39. Tsujino, Y., Y. Yokoo, and K. Sakato (1991) Hair coloring and waiving using oxidases. J. Soc. Cosmet. Chem. 42: 273-282.
  40. Tuncagil, S., S. K. Kayahan, G. Bayramoglu, M. Y. Arica, and L. Toppare (2009) L-Dopa synthesis using tyrosinase immobilized on magnetic beads. J. Mol. Catal. B - Enzym. 58: 187-193. https://doi.org/10.1016/j.molcatb.2008.12.014
  41. Pialis, P. and B. A. Saville (1998) Production of L-DOPA from tyrosinase immobilized on nylon 6,6: enzyme stability and scaleup. Enzyme Microb. Tech. 22: 261-268. https://doi.org/10.1016/S0141-0229(97)00195-6
  42. Pandey, G., C. Muralikrishna, and U. T. Bhalerao (1989) Mushroom tyrosinase catalyzed synthesis of coumestans, benzofuran derivatives and related heterocyclic-compounds. Tetrahedron. 45: 6867-6874. https://doi.org/10.1016/S0040-4020(01)89154-7
  43. Chen, T. H., R. Vazquez-Duhalt, C. F. Wu, W. E. Bentley, and G. F. Payne (2001) Combinatorial screening for enzyme-mediated coupling. Tyrosinase-catalyzed coupling to create protein-chitosan conjugates. Biomacromolecules 2: 456-462. https://doi.org/10.1021/bm000125w
  44. Anghileri, A., R. Lantto, K. Kruus, C. Arosio, and G. Freddi (2007) Tyrosinase-catalyzed grafting of sericin peptides onto chitosan and production of protein-polysaccharide bioconjugates. J. Biotechnol. 127: 508-519. https://doi.org/10.1016/j.jbiotec.2006.07.021
  45. Kang, G. D., K. H. Lee, C. S. Ki, J. H. Nahm, and Y. H. Park (2004) Silk fibroin/chitosan conjugate crosslinked by tyrosinase. Macromol. Res. 12: 534-539. https://doi.org/10.1007/BF03218439
  46. Jus, S., V. Kokol, and G. M. Guebitz (2009) Tyrosinase-catalysed coating of wool fibres with different protein-based biomaterials. J. Biomat. Sci. Polym. E. 20: 253-269. https://doi.org/10.1163/156856209X404523
  47. Freddi, G., A. Anghileri, S. Sampaio, J. Buchert, P. Monti, and P. Taddei (2006) Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: Grafting of chitosan under heterogeneous reaction conditions. J. Biotechnol. 125: 281-294. https://doi.org/10.1016/j.jbiotec.2006.03.003
  48. Choi, Y. S., D. G. Kang, S. Lim, Y. J. Yang, C. S. Kim, and H. J. Cha (2011) Recombinant mussel adhesive protein fp-5 (MAP fp5) as a bulk bioadhesive and surface coating material. Biofouling. 27: 729-737. https://doi.org/10.1080/08927014.2011.600830
  49. Girelli, A. M, T. Giuliani, E. Mattei, and D. Papaleo (2009) Determination of an antioxidant capacity index by immobilized tyrosinase bioreactor. J. Agr. Food Chem. 57: 5178-5186. https://doi.org/10.1021/jf900125j
  50. Tatsuma, T., K. Komori, H. H. Yeoh, and N. Oyama (2000) Disposable test plates with tyrosinase and beta-glucosidases for cyanide and cyanogenic glycosides. Anal. Chim. Acta. 408: 233-240. https://doi.org/10.1016/S0003-2670(99)00744-8
  51. Saratale, R. G., G. D. Saratale, J. S. Chang, and S. P. Govindwar (2011) Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. Eng. 42: 138-157. https://doi.org/10.1016/j.jtice.2010.06.006
  52. Duran, N. and E. Esposito (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: A review. Appl. Catal. B - Environ. 28: 83-99. https://doi.org/10.1016/S0926-3373(00)00168-5
  53. Rosenzweig, A. C. and M. H. Sazinsky (2006) Structural insights into dioxygen-activating copper enzymes. Curr. Opin. Struc. Biol. 16: 729-735. https://doi.org/10.1016/j.sbi.2006.09.005
  54. Ismaya, W. T., H. J. Rozeboom, A. Weijn, J. J. Mes, F. Fusetti, H. J. Wichers, and B. W. Bijkstra (2011) Crystal structure of agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry 50: 5477-5486. https://doi.org/10.1021/bi200395t

Cited by

  1. B16F10 멜라닌 세포에서 약콩(Glycine soja Siebold et Zucc.) 분획 추출물의 멜라닌 생성 저해 효과 vol.43, pp.3, 2014, https://doi.org/10.15230/scsk.2017.43.3.231
  2. Type-3 Copper 효소로서 티로시나아제의 구조 및 기능적 특성에 관한 고찰 vol.33, pp.2, 2018, https://doi.org/10.7841/ksbbj.2018.33.2.63