DOI QR코드

DOI QR Code

Modeling Methodology for Cold Tolerance Assessment of Pittosporum tobira

돈나무의 내한성 평가 모델링

  • Kim, Inhea (Department of Landscape Architecture, Gyeongnam National University of Science and Technology) ;
  • Huh, Keun Young (Department of Landscape Architecture, Gyeongnam National University of Science and Technology) ;
  • Jung, Hyun Jong (Department of Landscape Architecture, Gyeongnam National University of Science and Technology) ;
  • Choi, Su Min (Southern Forest Resources Research Center, Korea Forest Research Institute) ;
  • Park, Jae Hyoen (Department of Forest Resources, Gyeongnam National University of Science and Technology)
  • 김인혜 (경남과학기술대학교 조경학과) ;
  • 허근영 (경남과학기술대학교 조경학과) ;
  • 정현종 (경남과학기술대학교 조경학과) ;
  • 최수민 (국립산림과학원 남부산림자원연구소) ;
  • 박재현 (경남과학기술대학교 산림자원학과)
  • Received : 2013.03.18
  • Accepted : 2013.07.31
  • Published : 2014.04.30

Abstract

This study was carried out to develop a simple, rapid and reliable assessment model to predict cold tolerance in Pittosporum tobira, a broad-leaved evergreen commonly used in the southern region of South Korea, which can minimize the possible experimental errors appeared in a electrolyte leakage test for cold tolerance assessment. The modeling procedure comprised of regrowth test and a electrolyte leakage test on the plants exposed to low temperature treatments. The lethal temperatures estimated from the methodological combinations of a electrolyte leakage test including tissue sampling, temperature treatment for potential electrical conductivity, and statistical analysis were compared to the results of the regrowth test. The highest temperature showing the survival rate lower than 50% obtained from the regrowth test was $-10^{\circ}C$ and the lethal was $-10^{\circ}C{\sim}-5^{\circ}C$. Based on the results of the regrowth test, several methodological combinations of electrolyte leakage tests were evaluated and the electrolyte leakage lethal temperatures estimated using leaf sample tissue and freeze-killing method were closest to the regrowth lethal temperature. Evaluating statistical analysis models, linear interpolation had a higher tendency to overestimate the cold tolerance than non-linear regression. Consequently, the optimal model for cold tolerance assessment of P. tobira is composed of evaluating electrolyte leakage from leaf sample tissue applying freeze-killing method for potential electrical conductivity and predicting lethal temperature through non-linear regression analysis.

본 연구는 남부 지방에서 널리 사용되고 있는 상록활엽수인 돈나무의 내한성 예측을 위한 편리하고 신뢰성 있는 평가 모델 개발을 목적으로 전해질 용출법을 통한 내한성 평가에서 나타나는 실험방법 상의 오차를 최소화하는 내한성 평가 모델을 도출하고자 수행되었다. 평가 모델링은 저온 처리된 식물체에 대한 재생검사와 전해질 용출 평가로 구성되었고, 전해질 용출법에서 표본조직 선택, 최대 전해질 용출 측정을 위한 온도 처리법, 치사 온도 예측을 위한 통계 분석법에 의한 방법적 조합들로부터 예측된 치사 온도들이 재생검사 결과와 비교되었다. 재생 검사 결과 돈나무의 저온 치사 온도는 50% 미만의 생존율을 보이는 최고온도인 $^-10{\circ}C{\sim}-5^{\circ}C$로 분석되었고, 이 결과를 바탕으로 전해질 용출법에 의해 예측된 저온 치사 온도를 분석한 결과, 잎을 표본 조직으로 하여 냉각치사법으로 최대 전해질 용출을 측정한 방법적 조합에서 재생 검사 결과와 가장 근접한 예측 저온 치사 온도가 나타났다. 저온 치사온도 예측을 위한 통계 모델 평가에서는 선형보간법이 비선형회귀에 비하여 내한성을 과대평가하는 경향이 상대적으로 높았다. 결론적으로 돈나무 내한성 예측을 위한 내한성 평가 모델은 잎을 표본 조직으로 사용하고, 최대 전해질 용출 측정을 위한 온도 처리 방법으로 냉각치사법을 적용하며, 치사온도 예측을 위한 통계 분석 기법으로 비선형회귀를 활용하는 방법적 구성이 가장 적합한 것으로 나타났다.

Keywords

References

  1. Anderson, J.A., M.P. Kenna, and C.M. Taliaferro. 1988. Cold hardiness of 'Midiron' and 'Tifgreen' bermudagrass. HortScience 23:748-750.
  2. Anderson, J.A., C.M. Taliaferro, and D.L. Martin. 1993. Evaluating freeze tolerance of bermudagrass in a controlled environment. HortScience 28:955.
  3. Bannister, P. 2007. Godley review: A touch of frost? Cold hardiness of plants in the southern hemisphere. N.Z. J. Bot. 45:1-33. https://doi.org/10.1080/00288250709509700
  4. Cardona, C.A., R.R. Duncan, and O. Lindstrom. 1997. Low temperature tolerance assessment in Paspalum. Crop Sci. 37:1283-1291. https://doi.org/10.2135/cropsci1997.0011183X003700040043x
  5. Chun, J.U., S.W. Kang, D.S. Song, and J. Choi. 2000. Establishment of simple method for freezing resistance with use of electrical conductivity and 2, 3, 5-tripenyl tetrazolium chloride in tea (Camellia sinensis L.). J. Kor. Tea Soc. 6(3):121-133.
  6. Dunn, J.H., S.S. Bughrara, M.R. Warmund, and B.F. Fresenbug. 1999. Low temperature tolerance of zoysiagrasses. HortScience 34:96-99.
  7. Fry, J.D., N.S. Lang, R.G.P. Clifton, and F.P. Maier. 1993. Freezing tolerance and carbohydrate content of low temperature-acclimated and non-acclimated centipedegrass. Crop Sci. 33:1051-1055. https://doi.org/10.2135/cropsci1993.0011183X003300050035x
  8. Gudleifsson, B.E., C.J. Andrews, and H. Bjornsson. 1986. Cold hardiness and ice tolerance of pasture grasses grown and tested in controlled environment. Can. J. Plant Sci. 66:601-608. https://doi.org/10.4141/cjps86-080
  9. Iles, J.K. and N.H. Agnew. 1995. Seasonal cold-acclimation patterns of Sedum spectabile ${\times}$ telephium L. 'Autumn Joy' and Sedum spectabile Boreau. 'Brilliant'. HortScience 30:1221-1224.
  10. Ingram, D.L. 1985. Modeling high temperature and exposure time interaction on Pittosporum tobira root cell membrane thermostability. J. Amer. Soc. Hort. Sci. 110:470-473.
  11. Ingram, D.L. and D.W. Buchanan. 1981. Measurement of direct heat injury of roots of three woody plants. HortScience 16:769-771.
  12. Ingram, D.L. and D.W. Buchanan. 1984. Lethal high temperatures for roots of three citrus rootstocks. J. Amer. Soc. Hort. Sci. 109:189-193.
  13. Kim, I.H. 2006. Development of shallow-extensive green roof system for urban greening. PhD Thesis, Gyeongsang National Univ., Jinju, Korea.
  14. Kim, I.H., K.Y. Huh, and M.R. Huh. 2003. Heat tolerance assessment of Sedum species used for green roof systems. Kor. J. Hort. Sci. Technol. 21(Suppl. II):125.
  15. Kim, I.H., K.Y. Huh, and M.R. Huh. 2010. Cold tolerance assessment of Sedum species for shallow-extensive green roof system. Kor. J. Hort. Sci. Technol. 28:22-30.
  16. Lee, S.H., I.H. Heo, K.M. Lee, and W.T. Kwon. 2005. Classification of local climatic region in Korea. Asia-Pac. J. Atmos. Sci. 41:983-995.
  17. Maier, F.P., N.S. Lang, and J.D. Fry. 1994. Evaluation of an electrolyte leakage technique to predict St. Augustinegrass freezing tolerance. HortScience 29:316-318.
  18. Manley, R.C. and R.L. Hummel. 1996. Index of injury compared to tissue ionic conductance for calculating freeze damage of cabbage tissues. J. Amer. Soc. Hort. Sci. 121:1141-1146.
  19. Martineau, J.R., J.E. Specht, J.H. Williams, and C.Y. Sullivan. 1979. Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Sci. 19:75-78. https://doi.org/10.2135/cropsci1979.0011183X001900010017x
  20. McKellar, M.A., D.W. Buchanan, D.L. Ingram, and C.W. Campbell. 1992. Freezing tolerance of avocado leaves. HortScience 27: 341-343.
  21. Park, S.G. and K.K. Oh. 2002. Conservation status and restoration of evergreen broad-leaved forests in warm temperate region, Korea (I). Kor. J. Environ. Ecol. 16:309-320.
  22. Shashikumar, K. and J.L. Nus. 1993. Cultivar and winter cover effects on bermudagrass cold acclimation and crown moisture content. Crop Sci. 33:813-817. https://doi.org/10.2135/cropsci1993.0011183X003300040037x
  23. Shim, K.K., K.J. Lee, S.T. Choi, M.B. Choi, S.R. Shim, Y.S. Kim, S.B. Choi, H.S. Jin, Y.H. Cho, Y.B. Kim, J.C. Nam, and W.K. Shim. 1993. Landscape dendrology. 5th ed. Munundang, Seoul, Korea.
  24. Shin, C.S. 2011. Cold tolerance assessment of Lagerstroemia indica and Pyracantha angustifolia with dormant branches. J. Kor. Inst. Landscape Archit. 39(6):118-125. https://doi.org/10.9715/KILA.2011.39.6.118
  25. Shin, H.C., N.C. Park, and J.H. Hwang. 2006. Warm-temperate tree species of South Korea. Forest Research Institute, Seoul, Korea.
  26. Shin, H.C., N.C. Park, I.H. Kim, and K.Y. Huh. 2009. Cold tolerance assessment of Quercus spp. as evergreens for the central region in South Korea. Kor. J. Hort. Sci. Technol. 27(Suppl. II):158-159.
  27. Steponkus, P.L. and F.O. Lanphear. 1967. Refinement of triphenyl tetrazolium chloride method of determining cold injury. Plant Physiol. 42:1423-1426. https://doi.org/10.1104/pp.42.10.1423

Cited by

  1. 저온처리에 따른 국내 상록활엽수종의 내한성 비교 평가 vol.108, pp.4, 2019, https://doi.org/10.14578/jkfs.2019.108.4.484
  2. Cold Hardiness of 8 Hybrid Poplar Clones for the Introduction to Arid and Semi-Arid Areas vol.8, pp.1, 2014, https://doi.org/10.9787/pbb.2020.8.1.11