DOI QR코드

DOI QR Code

SUR 모형을 이용한 강수량과 대중교통 승객 수간 관계 분석

Analyzing the Relationship Between Precipitation and Transit Ridership Through a Seemingly Unrelated Regression Model

  • 신강원 (경성대학교 도시공학과) ;
  • 최기주 (아주대학교 교통시스템공학과)
  • Shin, Kangwon (Department of Urban Design and Development Engineering, Kyungsung University) ;
  • Choi, Keechoo (Department of Transportation System Engineering, Ajou University)
  • 투고 : 2013.03.04
  • 심사 : 2014.02.17
  • 발행 : 2014.04.30

초록

기상조건은 통행자의 수단선택 행위에 큰 영향을 미친다. 본 연구는 기상조건에 따른 여러 교통현상에 대한 가설 중 강수 시 대중교통수단의 승객수가 감소한다는 연구 가설을 실증하기 위해 수행되었다. 이를 위해 본 연구는 최근 24개월 동안 관측된 부산의 버스, 도시철도, 마을버스의 일일 승객 수와 일일 강수량의 관계를 외견상 무관해 보이는 회귀모형(SUR 모형)을 이용하여 분석하였다. 분석결과 일일 강수량이 10mm 이상일 때는 강수량이 증가함에 따라 각 대중교통수단의 승객 수는 감소하는 것으로 나타났다(강수량 1mm 증가 시 시내버스, 도시철도, 마을버스 승객 수는 각각 0.169%, 0.101%, 0.172% 감소). 이처럼 부산의 대중교통수단의 승객 수는 일일 강수량이 10mm 이상인 날 감소하나 도시철도 승객 수 감소는 교차방정식 제약검정 결과 강수량 증가에 상대적으로 둔감한 것으로 나타났다. 그러나 도시철도 승객 수 추정식의 강수량 계수부호는 음수로 부산의 대중교통수단 이용객들은 10mm 이상의 강수일에는 접근, 대기, 환승에 불편이 있는 대중교통수단간 수단 전환보다는 좀 더 쾌적한 통행을 할 수 있는 택시나 승용차로 수단을 전환하거나 통행을 포기하는 경향이 두드러진다고 판단된다.

Weather condition is one of the crucial factors affecting travelers' mode choice. Nevertheless, there are numerous indefinite traffic phenomena under various weather conditions. This study was conducted to verify the hypothesis that transit riderships decrease as precipitation increases. To clarify the relationship between precipitation and transit ridership, a seemingly unrelated regression model was employed with data such as daily precipitation and daily transit riderships of 3 transit modes (bus, metro, and shuttle bus) collected in Busan for recent 24 months. The estimation results show that transit riderships decreased as the daily precipitation increased when the daily precipitation is greater or equal to 10mm/day (0.169%, 0.101%, and 0.172% reduction in bus, metro, and shuttle bus riderships, respectively, when the daily precipitation increased by 1mm). When comparing the impact of precipitation on transit riderships by modes using a cross-equation parameter restriction test, the decrease in metro ridership is relatively insensitive to the change in precipitation. However, the negative coefficient of precipitation in the metro ridership estimation model indicates that the transit users in Busan may alter their mode to taxi or automobile and/or may give up the trip itself in bad weather condition.

키워드

참고문헌

  1. Aaheim H. A., Hauge E. K. (2005), Impacts of Climate Changes on Travel Habits, A National Assessment Based on Individual Choices, Center for International Climate and Environmental Research, Blindern, Oslo.
  2. Baum C. F. (2006), An Introduction to Modern Econometrics Using Stata, Stata Press.
  3. Cameron A. C., Trivedi P. K. (2005), Microeconometrics: Methods and Applications, Cambridge University Press.
  4. De Palma A., Rochat D. (1999), Understanding Individual Travel Decision: Results From Commuters Survey in Geneva, Transportation, 26, 263-281. https://doi.org/10.1023/A:1005121605832
  5. Greene W. H. (2001), Econometric Analysis, 5th edition, Prentice Hall.
  6. Guo Z., Wilson N. H., Rahbee A. (2008), Impact of Weather on Transit Ridership in Chicago, Illinois, Journal of the Transportation Research Board, 3-10.
  7. Jung H. Y., Song K. Y., Kim G. W. (2011), Analysis of Intra-city Bus Demand during Rainfall Using Ordered Probit Model, J. Korean Soc. Transp., 29(5), Korean Society of Transportation, 43-54.
  8. Khattak A. J. (1991), Driver Response to Unexpected Travel Conditions: Effect of Traffic Information and Other Factors. Ph.D. Dissertation, Department of Civil Engineering, Northwestern University, Evanston, Illinois.
  9. Khattak A. J., De Palma A. (1997), The Impact of Adverse Weather Conditions on the Propensity To Change Travel Decisions: A Survey Of Brussels Commuters, Transportation Research A, 3, 181-203.
  10. Kim G. W., Jung H. Y. (2012), A Study on the Factors Affecting to Service Satisfaction of Intra-city Bus Users, J. Korean Soc. Civil Eng., 32(3D), Korean Society of Civil Engineers, 213-222. https://doi.org/10.12652/Ksce.2012.32.4B.213
  11. Korea Meteorological Adminstration (2011), 2011 Annual Climatological Report.
  12. Korea Meteorological Adminstration (2012), 2012 Annual Climatological Report.
  13. Min I. S., Choi P. S. (2012), Advanced Panel Data Analysis, The Korean Association of STATA, Jiphil Press.
  14. Nesse K. (2012), Impacts of Inclement Weather on Transit Ridership: A Minneapolis, MN Case Study, Unpublished Paper.
  15. Park K. Y., Lee S. B. (2012), A Study on the Effect of Adverse Weather Conditions on Public Transportation Mode Choice, J. Korean Soc. Civil Eng., 32(1D), Korean Society of Civil Engineers, 23-31.
  16. Saneinejad S., Roorda M. J., Kennedy C. (2012), Modelling the Impact of Weather Conditions on Active Transportation Travel Behaviour, Transportation Research Part D, 17, 129-137.
  17. Transit Cooperative Research Program Report 46 (1999), The Role of Transit Amenities and Vehicle Characteristics in Building Transit Ridership: Amenities for Transit Handbook and The Transit Design Game Workbook, Transportation Research Board.
  18. Zellner A. (1962), An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias, Journal of the American Statistical Association, 57(298), 348-368. https://doi.org/10.1080/01621459.1962.10480664

피인용 문헌

  1. Inferring the Transit Trip Destination Zone of Smart Card User Using Trip Chain Structure vol.34, pp.5, 2016, https://doi.org/10.7470/jkst.2016.34.5.437
  2. Exploring the Temporal Relationship Between Traffic Information Web/Mobile Application Access and Actual Traffic Volume on Expressways vol.34, pp.1, 2016, https://doi.org/10.7470/jkst.2016.34.1.001
  3. A Study on the Key Factors Affecting Travel Time Budget for Elderly Pedestrians vol.14, pp.4, 2015, https://doi.org/10.12815/kits.2015.14.4.062
  4. 연구개발투자에 따른 비용저감 효과 분석: ICT산업을 중심으로 vol.24, pp.3, 2014, https://doi.org/10.14383/sime.2016.24.3.81
  5. 농식품 수출조직 운영성과 영향요인 분석 vol.14, pp.10, 2014, https://doi.org/10.15722/jds.14.10.201610.93
  6. The Impact of Weather Conditions on Transit Ridership Using Quantile Regression Analysis vol.53, pp.4, 2018, https://doi.org/10.17208/jkpa.2018.08.53.4.95
  7. Analysis on the Relationship between the Fine Dust Concentration and Subway Ridership for the Evaluation of Fine Dust Response Policies vol.54, pp.4, 2014, https://doi.org/10.17208/jkpa.2019.08.54.4.79
  8. 기상상황에 따른 서울시 대중교통 이용 변화 분석: 폭설을 중심으로 vol.39, pp.6, 2014, https://doi.org/10.12652/ksce.2019.39.6.0859