DOI QR코드

DOI QR Code

Ultra g-Bessel Sequences in Hilbert Spaces

  • Abdollahpour, Mohammad Reza (Department of Mathematics, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili) ;
  • Najati, Abbas (Department of Mathematics, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili)
  • Received : 2011.11.03
  • Accepted : 2013.04.24
  • Published : 2014.03.23

Abstract

In this paper, we introduce ultra g-Bessel sequences and study some properties of this kind of sequences in Hilbert spaces. We also show that every g-frame for a finite dimensional Hilbert space is an ultra g-Bessel sequence.

Keywords

References

  1. M. R. Abdollahpour and M. H. Faroughi, Continuous g-frames in Hilbert spaces, Southeast Asian Bull. Math., 32(2008), 1-19.
  2. M. R. Abdollahpour, M. H. Faroughi and A. Rahimi, pg-frames in Banach spaces, Methods Funct. Anal. Topology, 13(3)(2007), 201-210.
  3. M. R. Abdollahpour and A. Najati, Besselian G-frames and near G-Riesz bases, Appl. Anal. Discrete Math., 5(2)(2011), 259-270. https://doi.org/10.2298/AADM110510013A
  4. M. R. Abdollahpour and A. Najati, G-frames and Hilbert-Schmidt operators, Bull. Iranian Math. Soc., 37(4)(2011), 141-155.
  5. M. H. Faroughi and A. Najati, Ultra Bessel Sequences in Hilbert Spaces, Southeast Asian Bull. Math., 32(2008), 425-436.
  6. A. Khosravi, and B. khosravi, Fusion frames and g-frames in Hilber $C*$-modules, Int. J. Wavelets Multiresolut. Inf. Process., 6(2008), 433-446. https://doi.org/10.1142/S0219691308002458
  7. A. Najati, M.H. Faroughi and A. Rahimi, G-frames and stability of g-frames in Hilbert spaces, Methods Funct. Anal. Topology, 4(2008), 271-286.
  8. W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl., 322(2006), 437-452. https://doi.org/10.1016/j.jmaa.2005.09.039