DOI QR코드

DOI QR Code

Integrability and L1-convergence of Certain Cosine Sums with Quasi Hyper Convex Coefficients

  • Braha, Naim Latif (Department of Mathematics and Computer Sciences, University of Prishtina, College Vizioni per Arsim)
  • Received : 2011.04.06
  • Accepted : 2011.09.28
  • Published : 2014.03.23

Abstract

In this paper criterion for $L_1$-convergence of a certain cosine sums with quasi hyper-convex coefficients is obtained.

Keywords

References

  1. R. Bala and B. Ram, Trigonometric series with semi-convex coefficients, Tamkang J. Math., 18(2)(1987), 11-17.
  2. K. N. Bary, Trigonometric series, Moscow, (1961)(in Russian.)
  3. L. S. Bosanquet, Note on convergence and summability factors III, Proc. London Math. Soc., 50(1949), 482-496.
  4. N. L. Braha and Xh. Z. Krasniqi, On $L_1$-convergence of certain cosine sums, Bull. Math. Anal. Appl., 1(1)(2009), 55-61.
  5. J. W. Garrett and C. V. Stanojevic, On integrability and $L_1$- convergence of certain cosine sums, Notices, Amer. Math. Soc., 22(1975), A-166.
  6. J. W. Garrett and C. V. Stanojevic, On $L_1$- convergence of certain cosine sums, Proc. Amer. Math. Soc., 54(1976), 101-105.
  7. A. N. Kolmogorov, Sur l'ordere de grandeur des coefficients de la series de Fourier-Lebesque, Bull. Polon. Sci. Ser. Sci. Math. Astronom. Phys., (1923) 83-86.
  8. Kulwinder Kaur, On $L_1$- convergence of modified sine sums, An electronic journal of Geography and Mathematics, 14(1)(2003), 1-6.
  9. Kulwinder Kaur and S. S. Bahtia, Integrability and $L_1$-convergence of Rees-Stanojevic sums with generalized semiconvex coefficients, Int. J. Math. Math. Sci., 30(11)(2002), 645-650. https://doi.org/10.1155/S0161171202012942
  10. Kumari Suresh and Ram Babu, $L_1$-convergence of a modified cosine sum., Indian J. Pure Appl. Math., 19(11)(1988), 1101-1104.
  11. B. Ram, Convergence of certain cosine sums in the metric space L, Proc. Amer. Math.Soc., 66(1977), 258-260.
  12. N. Singh and K. M. Sharma, Convergence of certain cosine sums in the metric space L, Proc. Amer. Math.Soc., 75(1978), 117-120.
  13. W. H. Young, On the Fourier series of bounded functions, Proc.London Math. Soc., 12(2)(1913), 41-70.
  14. A. Zygmund, Trigonometric series, Vol. 1, Cambridge University Press, Cambridge, 1959.