DOI QR코드

DOI QR Code

Linking bilinear traction law parameters to cohesive zone length for laminated composites and bonded joints

  • Li, Gang (Aerospace, National Research Council Canada M-3) ;
  • Li, Chun (Aerospace, National Research Council Canada M-3)
  • Received : 2013.07.18
  • Accepted : 2013.11.01
  • Published : 2014.03.25

Abstract

A theoretical exploration for determining the characteristic length of the cohesive zone for a double cantilever beam (DCB) specimen under mode I loading was conducted. Two traction-separation laws were studied: (i) a law with only a linear elastic stage from zero to full traction strength; and (ii) a bilinear traction law illustrating a progressive softening stage. Two analytical solutions were derived for the first law, which fit well into two existing solution groups. A transcendental equation was derived for the bilinear traction law, and a graphical method was presented to identify the resultant cohesive zone length. The study using the bilinear traction law enabled the theoretical investigation of the individual effects of cohesive law parameters (i.e., strength, stiffness, and fracture energy) on the cohesive zone length. Correlations between the theoretical and finite element (FE) results were assessed. Effects of traction law parameters on the cohesive zone length were discussed.

Keywords

References

  1. Alfano, G. (2006), "On the influence of the shape of the interface law on the application of cohesive-zone models", Compos. Sci. Technol., 66(6), 723-730. https://doi.org/10.1016/j.compscitech.2004.12.024
  2. Andersson, T.and Biel, A. (2006), "On the effective constitutive properties of a thin adhesive layer loading in peel", Int. J. Fracture, 141(1-2), 227-246. https://doi.org/10.1007/s10704-006-0075-6
  3. Bao, G. and Suo, Z. (1992), "Remarks on crack-bridging concepts", Appl. Mech. Rev., 45(8), 355-366. https://doi.org/10.1115/1.3119764
  4. Chow, C.L., Woo, C.W. and Sykes, J.L. (1979), "On the determination and application of COD to epoxy-bonded aluminium joints", J. Strain. Anal., 114(2), 37-42.
  5. Davis, M. and Bond, D. (1999), "Principles and practices of adhesive bonded structural joints and repairs", Int. J. Adhesion. Adhes., 19(2-3), 91-105. https://doi.org/10.1016/S0143-7496(98)00026-8
  6. de Moura, M., Goncalves, J., Chousal, J. and Campilho, R. (2008), "Cohesive and continuum mixed-mode damage models applied to the simulation of the mechanical behavior of bonded joints", Int. J. Adhesion. Adhes., 28(8), 419-426. https://doi.org/10.1016/j.ijadhadh.2008.04.004
  7. Dias, G.F., de Moura, M.F.S.F., Chousal, J.A.G. and Xavier, J. (2013), "Cohesive laws of composite bonded joints under mode I loading", Compos. Struct., 106(12), 646-652. https://doi.org/10.1016/j.compstruct.2013.07.027
  8. Harper, P.W. and Hallett, S.R. (2008), "Cohesive zone length in numerical simulations of composite delamination", Eng. Fract. Mech., 75(16), 4774-4792. https://doi.org/10.1016/j.engfracmech.2008.06.004
  9. Ji, G., Ouyang, Z., Li, G., Ibekwe, S. and Pang, S. (2010), "Effects of adhesive thickness on global and local Mode-I interfacial fracture of bonded joints", Int. J. Solids Struct., 47(18-19), 2445-2458. https://doi.org/10.1016/j.ijsolstr.2010.05.006
  10. Kanninen, M.F. (1973), "An augmented double cantilever beam model for studying crack propagation and arrest", Int. J. Fracture, 9(1), 83-92.
  11. Khoramishad, H., Crocombe, A.D., Katnam. K.B. and Ashcroft, I.A. (2010), "Predicting fatigue damage in adhesively bonded joints using a cohesive zone model", Int. J. Fatigue, 32(7), 1146-1158. https://doi.org/10.1016/j.ijfatigue.2009.12.013
  12. Krenk, S. (1992), "Energy release rate of symmetric adhesive joints", Eng. Fract Mech., 43(4), 549-559. https://doi.org/10.1016/0013-7944(92)90198-N
  13. Krueger, R. (2004), "The virtual crack closure technique: history, approach and application", Appl. Mech. Rev., 57(2), 109-143. https://doi.org/10.1115/1.1595677
  14. Landry, B. and Laplante, G. (2012), "Modeling delamination growth in composites under fatigue loading of varying amplitudes", Compos. Part B, 43(2), 533-541. https://doi.org/10.1016/j.compositesb.2011.08.020
  15. Li, G., Johnston, A., Yanishevsky, M. and Bellinger, N.C. (2011), "Elastic deformation analysis of adhesively bonded composite butt joints in tension", J. Aircraft, 48(2), 578-90. https://doi.org/10.2514/1.C031164
  16. Li, G., Chen, J.H., Yanishevsky, M. and Bellinger, N.C. (2012), "Static strength of a composite butt joint configuration with different attachments", Compos. Struct., 94(5), 1736-1744. https://doi.org/10.1016/j.compstruct.2011.12.008
  17. Li, G. and Li, C. (2013), "An analytical analysis of energy release rate in bonded composite joints in a mode I condition", Compos. Part B, 4(1), 704-713.
  18. Li, G. (2013), "Fatigue performance characterization of a composite butt joint configuration", Compos. Part A, 51(8), 43-55. https://doi.org/10.1016/j.compositesa.2013.04.001
  19. Mi, Y., Crisfield, M.A. and Davies, G. (1998), "Progressive delamination using interface element", J. Compos. Mater., 32(14), 1246-1272. https://doi.org/10.1177/002199839803201401
  20. Rybicki, E.F. and Kanninen, M.F. (1977), "A finite element calculation of stress intensity factors by a modified crack closure integral", Eng. Fract. Mech., 9(4), 931-939. https://doi.org/10.1016/0013-7944(77)90013-3
  21. Turon, A., Costa, J., Camanho, P.P. and Davila, C.G. (2007a), "Simulation of delamination in composites under high-cycle fatigue", Compos. Part A, 38(11), 2270-2282. https://doi.org/10.1016/j.compositesa.2006.11.009
  22. Turon, A., Davila, C.G., Camanho, P.P. and Costa, J. (2007b), "An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models", Eng. Fract. Mech., 74(10), 1665-1682. https://doi.org/10.1016/j.engfracmech.2006.08.025
  23. Williams, J.G. and Hadavinia, H. (2002), "Analytical solutions for cohesive zone models", J. Mech. Phys. Solids, 50(4), 809-825. https://doi.org/10.1016/S0022-5096(01)00095-3
  24. Yang, Q. and Cox, B. (2005), "Cohesive models for damage evolution in laminated composites", Int. J. Fracture, 133(2), 107-137. https://doi.org/10.1007/s10704-005-4729-6
  25. Yang, Q., Cox, B., Nalla, R. and Ritchie, R. (2006), "Fracture length scales in human cortical bone: the necessity of nonlinear fracture models", Biomaterials, 27(9), 2095-2113. https://doi.org/10.1016/j.biomaterials.2005.09.040
  26. Zou, Z., Reid, S.R., Li, S. and Soden, P.D. (2003), "Modelling interlaminar and intralaminar damage in filament-wound pipes under quasi-static indentation", J. Compos. Mater., 36(4), 477-499.
  27. Ashtonm, H.R. (1996), "Damage tolerance and durability testing for A/A-18 E/F composite materials structures", Proceedings of the 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Salt Lake City, UT, April, paper AIAA-96-1320-CP.

Cited by

  1. Assessment of debond simulation and cohesive zone length in a bonded composite joint vol.69, 2015, https://doi.org/10.1016/j.compositesb.2014.10.024
  2. A new analytical approach for optimization design of adhesively bonded single-lap joint vol.59, pp.2, 2016, https://doi.org/10.12989/sem.2016.59.2.313
  3. On the identification of cohesive parameters for printed metal-polymer interfaces vol.26, pp.5, 2017, https://doi.org/10.1088/1361-665X/aa699f
  4. The effects of adhesion on the tensile strength of steel-polymer sandwich composites vol.30, pp.5, 2014, https://doi.org/10.1080/09243046.2020.1835793