References
- Alfano, G. (2006), "On the influence of the shape of the interface law on the application of cohesive-zone models", Compos. Sci. Technol., 66(6), 723-730. https://doi.org/10.1016/j.compscitech.2004.12.024
- Andersson, T.and Biel, A. (2006), "On the effective constitutive properties of a thin adhesive layer loading in peel", Int. J. Fracture, 141(1-2), 227-246. https://doi.org/10.1007/s10704-006-0075-6
- Bao, G. and Suo, Z. (1992), "Remarks on crack-bridging concepts", Appl. Mech. Rev., 45(8), 355-366. https://doi.org/10.1115/1.3119764
- Chow, C.L., Woo, C.W. and Sykes, J.L. (1979), "On the determination and application of COD to epoxy-bonded aluminium joints", J. Strain. Anal., 114(2), 37-42.
- Davis, M. and Bond, D. (1999), "Principles and practices of adhesive bonded structural joints and repairs", Int. J. Adhesion. Adhes., 19(2-3), 91-105. https://doi.org/10.1016/S0143-7496(98)00026-8
- de Moura, M., Goncalves, J., Chousal, J. and Campilho, R. (2008), "Cohesive and continuum mixed-mode damage models applied to the simulation of the mechanical behavior of bonded joints", Int. J. Adhesion. Adhes., 28(8), 419-426. https://doi.org/10.1016/j.ijadhadh.2008.04.004
- Dias, G.F., de Moura, M.F.S.F., Chousal, J.A.G. and Xavier, J. (2013), "Cohesive laws of composite bonded joints under mode I loading", Compos. Struct., 106(12), 646-652. https://doi.org/10.1016/j.compstruct.2013.07.027
- Harper, P.W. and Hallett, S.R. (2008), "Cohesive zone length in numerical simulations of composite delamination", Eng. Fract. Mech., 75(16), 4774-4792. https://doi.org/10.1016/j.engfracmech.2008.06.004
- Ji, G., Ouyang, Z., Li, G., Ibekwe, S. and Pang, S. (2010), "Effects of adhesive thickness on global and local Mode-I interfacial fracture of bonded joints", Int. J. Solids Struct., 47(18-19), 2445-2458. https://doi.org/10.1016/j.ijsolstr.2010.05.006
- Kanninen, M.F. (1973), "An augmented double cantilever beam model for studying crack propagation and arrest", Int. J. Fracture, 9(1), 83-92.
- Khoramishad, H., Crocombe, A.D., Katnam. K.B. and Ashcroft, I.A. (2010), "Predicting fatigue damage in adhesively bonded joints using a cohesive zone model", Int. J. Fatigue, 32(7), 1146-1158. https://doi.org/10.1016/j.ijfatigue.2009.12.013
- Krenk, S. (1992), "Energy release rate of symmetric adhesive joints", Eng. Fract Mech., 43(4), 549-559. https://doi.org/10.1016/0013-7944(92)90198-N
- Krueger, R. (2004), "The virtual crack closure technique: history, approach and application", Appl. Mech. Rev., 57(2), 109-143. https://doi.org/10.1115/1.1595677
- Landry, B. and Laplante, G. (2012), "Modeling delamination growth in composites under fatigue loading of varying amplitudes", Compos. Part B, 43(2), 533-541. https://doi.org/10.1016/j.compositesb.2011.08.020
- Li, G., Johnston, A., Yanishevsky, M. and Bellinger, N.C. (2011), "Elastic deformation analysis of adhesively bonded composite butt joints in tension", J. Aircraft, 48(2), 578-90. https://doi.org/10.2514/1.C031164
- Li, G., Chen, J.H., Yanishevsky, M. and Bellinger, N.C. (2012), "Static strength of a composite butt joint configuration with different attachments", Compos. Struct., 94(5), 1736-1744. https://doi.org/10.1016/j.compstruct.2011.12.008
- Li, G. and Li, C. (2013), "An analytical analysis of energy release rate in bonded composite joints in a mode I condition", Compos. Part B, 4(1), 704-713.
- Li, G. (2013), "Fatigue performance characterization of a composite butt joint configuration", Compos. Part A, 51(8), 43-55. https://doi.org/10.1016/j.compositesa.2013.04.001
- Mi, Y., Crisfield, M.A. and Davies, G. (1998), "Progressive delamination using interface element", J. Compos. Mater., 32(14), 1246-1272. https://doi.org/10.1177/002199839803201401
- Rybicki, E.F. and Kanninen, M.F. (1977), "A finite element calculation of stress intensity factors by a modified crack closure integral", Eng. Fract. Mech., 9(4), 931-939. https://doi.org/10.1016/0013-7944(77)90013-3
- Turon, A., Costa, J., Camanho, P.P. and Davila, C.G. (2007a), "Simulation of delamination in composites under high-cycle fatigue", Compos. Part A, 38(11), 2270-2282. https://doi.org/10.1016/j.compositesa.2006.11.009
- Turon, A., Davila, C.G., Camanho, P.P. and Costa, J. (2007b), "An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models", Eng. Fract. Mech., 74(10), 1665-1682. https://doi.org/10.1016/j.engfracmech.2006.08.025
- Williams, J.G. and Hadavinia, H. (2002), "Analytical solutions for cohesive zone models", J. Mech. Phys. Solids, 50(4), 809-825. https://doi.org/10.1016/S0022-5096(01)00095-3
- Yang, Q. and Cox, B. (2005), "Cohesive models for damage evolution in laminated composites", Int. J. Fracture, 133(2), 107-137. https://doi.org/10.1007/s10704-005-4729-6
- Yang, Q., Cox, B., Nalla, R. and Ritchie, R. (2006), "Fracture length scales in human cortical bone: the necessity of nonlinear fracture models", Biomaterials, 27(9), 2095-2113. https://doi.org/10.1016/j.biomaterials.2005.09.040
- Zou, Z., Reid, S.R., Li, S. and Soden, P.D. (2003), "Modelling interlaminar and intralaminar damage in filament-wound pipes under quasi-static indentation", J. Compos. Mater., 36(4), 477-499.
- Ashtonm, H.R. (1996), "Damage tolerance and durability testing for A/A-18 E/F composite materials structures", Proceedings of the 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Salt Lake City, UT, April, paper AIAA-96-1320-CP.
Cited by
- Assessment of debond simulation and cohesive zone length in a bonded composite joint vol.69, 2015, https://doi.org/10.1016/j.compositesb.2014.10.024
- A new analytical approach for optimization design of adhesively bonded single-lap joint vol.59, pp.2, 2016, https://doi.org/10.12989/sem.2016.59.2.313
- On the identification of cohesive parameters for printed metal-polymer interfaces vol.26, pp.5, 2017, https://doi.org/10.1088/1361-665X/aa699f
- The effects of adhesion on the tensile strength of steel-polymer sandwich composites vol.30, pp.5, 2014, https://doi.org/10.1080/09243046.2020.1835793