DOI QR코드

DOI QR Code

The I/LWEQ Domain in RapGAP3 Required for Posterior Localization in Migrating Cells

  • Lee, Mi-Rae (Department of Biology and Brain Korea 21- Plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University) ;
  • Kim, Hyeseon (Department of Biology and Brain Korea 21- Plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University) ;
  • Jeon, Taeck J. (Department of Biology and Brain Korea 21- Plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University)
  • Received : 2013.10.29
  • Accepted : 2013.12.09
  • Published : 2014.04.30

Abstract

Cell migration requires a defined cell polarity which is formed by diverse cytoskeletal components differentially localized to the poles of cells to extracellular signals. Rap-GAP3 transiently and rapidly translocates to the cell cortex in response to chemoattractant stimulation and localizes to the leading edge of migrating cells. Here, we examined localization of truncated RapGAP3 proteins and found that the I/LWEQ domain in the central region of RapGAP3 was sufficient for posterior localization in migrating cells, as opposed to leading-edge localization of full-length Rap-GAP3. All truncated proteins accumulated at the leading edge of migrating cells exhibited clear translocation to the cell cortex in response to stimulation, whereas proteins localized to the posterior in migrating cells displayed no translocation to the cortex. The I/LWEQ domain appears to passively accumulate at the posterior region in migrating cells due to exclusion from the extended front region in response to chemoattractant stimulation rather than actively being localized to the back of cells. Our results suggest that posterior localization of the I/LWEQ domain of RapGAP3 is likely related to F-actin, which has probably different properties compared to newly formed F-actin at the leading edge of migrating cells, at the lateral and posterior regions of the cell.

Keywords

References

  1. Brett, T.J., Legendre-Guillemin, V., McPherson, P.S., and Fremont, D.H. (2006). Structural definition of the F-actin-binding THATCH domain from HIP1R. Nat. Struct. Mol. Biol. 13, 121-130. https://doi.org/10.1038/nsmb1043
  2. Cha, I., and Jeon, T.J. (2011). Dynamic localization of the actinbundling protein cortexillin I during cell migration. Mol. Cells 32, 281-287. https://doi.org/10.1007/s10059-011-0072-0
  3. Cha, I., Lee, S.H., and Jeon, T.J. (2010). Chemoattractant-mediated Rap1 activation requires GPCR/G proteins. Mol. Cells 30, 563-567. https://doi.org/10.1007/s10059-010-0153-5
  4. Galkin, V.E., Orlova, A., Schroder, G.F., and Egelman, E.H. (2010). Structural polymorphism in F-actin. Nat. Struct. Mol. Biol. 17, 1318-1323. https://doi.org/10.1038/nsmb.1930
  5. Jeon, T.J., Lee, D.J., Merlot, S., Weeks, G., and Firtel, R.A. (2007a). Rap1 controls cell adhesion and cell motility through the regulation of myosin II. J. Cell Biol. 176, 1021-1033. https://doi.org/10.1083/jcb.200607072
  6. Jeon, T.J., Lee, D.J., Lee, S., Weeks, G., and Firtel, R.A. (2007b). Regulation of Rap1 activity by RapGAP1 controls cell adhesion at the front of chemotaxing cells. J. Cell Biol. 179, 833-843. https://doi.org/10.1083/jcb.200705068
  7. Jeon, T.J., Lee, S., Weeks, G., and Firtel, R.A. (2009). Regulation of Dictyostelium morphogenesis by RapGAP3. Dev. Biol. 328, 210-220. https://doi.org/10.1016/j.ydbio.2009.01.016
  8. Kolsch, V., Charest, P.G., and Firtel, R.A. (2008). The regulation of cell motility and chemotaxis by phospholipid signaling. J. Cell Sci. 121, 551-559. https://doi.org/10.1242/jcs.023333
  9. Kooistra, M.R., Dube, N., and Bos, J.L. (2007). Rap1: a key regulator in cell-cell junction formation. J. Cell Sci. 120, 17-22.
  10. Kortholt, A., and van Haastert, P.J. (2008). Highlighting the role of Ras and Rap during Dictyostelium chemotaxis. Cell. Signal. 20, 1415-1422. https://doi.org/10.1016/j.cellsig.2008.02.006
  11. Kortholt, A., Bolourani, P., Rehmann, H., Keizer-Gunnink, I., Weeks, G., Wittinghofer, A., and Van Haastert, P.J. (2010). A Rap/phosphatidylinositol 3-kinase pathway controls pseudopod formation [corrected]. Mol. Biol. Cell 21, 936-945. https://doi.org/10.1091/mbc.E09-03-0177
  12. Lee, M.R., and Jeon, T.J. (2012). Cell migration: regulation of cytoskeleton by Rap1 in Dictyostelium discoideum. J. Microbiol. 50, 555-561. https://doi.org/10.1007/s12275-012-2246-7
  13. McCann, R.O., and Craig, S.W. (1997). The I/LWEQ module: a conserved sequence that signifies F-actin binding in functionally diverse proteins from yeast to mammals. Proc. Natl. Acad. Sci. USA 94, 5679-5684. https://doi.org/10.1073/pnas.94.11.5679
  14. Medina, E., Williams, J., Klipfell, E., Zarnescu, D., Thomas, G., and Le Bivic, A. (2002). Crumbs interacts with moesin and beta(Heavy)-spectrin in the apical membrane skeleton of Drosophila. J. Cell Biol. 158, 941-951. https://doi.org/10.1083/jcb.200203080
  15. Meili, R., Alonso-Latorre, B., del Alamo, J.C., Firtel, R.A., and Lasheras, J.C. (2010). Myosin II is essential for the spatiotemporal organization of traction forces during cell motility. Mol. Biol. Cell 21, 405-417. https://doi.org/10.1091/mbc.E09-08-0703
  16. Mun, H., and Jeon, T.J. (2012). Regulation of actin cytoskeleton by Rap1 binding to RacGEF1. Mol. Cells 34, 71-76. https://doi.org/10.1007/s10059-012-0097-z
  17. Parkinson, K., Bolourani, P., Traynor, D., Aldren, N.L., Kay, R.R., Weeks, G., and Thompson, C.R. (2009). Regulation of Rap1 activity is required for differential adhesion, cell-type patterning and morphogenesis in Dictyostelium. J. Cell Sci. 122, 335-344. https://doi.org/10.1242/jcs.036822
  18. Raaijmakers, J.H., and Bos, J.L. (2009). Specificity in Ras and Rap signaling. J. Biol. Chem. 284, 10995-10999. https://doi.org/10.1074/jbc.R800061200
  19. Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T., and Horwitz, A.R. (2003). Cell migration: integrating signals from front to back. Science 302, 1704-1709. https://doi.org/10.1126/science.1092053
  20. Sanchez-Madrid, F., and Serrador, J.M. (2009). Bringing up the rear: defining the roles of the uropod. Nat. Rev. Mol. Cell Biol. 10, 353-359. https://doi.org/10.1038/nrm2680
  21. Sasaki, A.T., Chun, C., Takeda, K., and Firtel, R.A. (2004). Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J. Cell Biol. 167, 505-518. https://doi.org/10.1083/jcb.200406177
  22. Senetar, M.A., Foster, S.J., and McCann, R.O. (2004). Intrasteric inhibition mediates the interaction of the I/LWEQ module proteins Talin1, Talin2, Hip1, and Hip12 with actin. Biochemistry 43, 15418-15428. https://doi.org/10.1021/bi0487239
  23. Tsujioka, M., Yumura, S., Inouye, K., Patel, H., Ueda, M., and Yonemura, S. (2012). Talin couples the actomyosin cortex to the plasma membrane during rear retraction and cytokinesis. Proc. Natl. Acad. Sci. USA 109, 12992-12997. https://doi.org/10.1073/pnas.1208296109
  24. Uyeda, T.Q., Iwadate, Y., Umeki, N., Nagasaki, A., and Yumura, S. (2011). Stretching actin filaments within cells enhances their affinity for the myosin II motor domain. PLoS One 6, e26200. https://doi.org/10.1371/journal.pone.0026200
  25. Wang, X.Y., Ostberg, J.R., and Repasky, E.A. (1999). Effect of feverlike whole-body hyperthermia on lymphocyte spectrin distribution, protein kinase C activity, and uropod formation. J. Immunol. 162, 3378-3387.
  26. Washington, R.W., and Knecht, D.A. (2008). Actin binding domains direct actin-binding proteins to different cytoskeletal locations. BMC Cell Biol. 9, 10. https://doi.org/10.1186/1471-2121-9-10
  27. Weber, I., Niewohner, J., Du, A., Rohrig, U., and Gerisch, G. (2002). A talin fragment as an actin trap visualizing actin flow in chemotaxis, endocytosis, and cytokinesis. Cell Motil Cytoskeleton 53, 136-149. https://doi.org/10.1002/cm.10065

Cited by

  1. Minimal amino acids in the I/LWEQ domain required for anterior/posterior localization in Dictyostelium vol.55, pp.5, 2017, https://doi.org/10.1007/s12275-017-6550-0