References
- Carbery, I.D., Ji, D., Harrington, A., Brown, V., Weinstein, E.J., Liaw, L., and Cui, X. (2010). Targeted genome modification in mice using zinc-finger nucleases. Genetics 186, 451-459. https://doi.org/10.1534/genetics.110.117002
- Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J., and Voytas, D.F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82. https://doi.org/10.1093/nar/gkr218
- Grobet, L., Martin, L.J., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Menissier, F., Massabanda, J., et al. (1997). A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17, 71-74. https://doi.org/10.1038/ng0997-71
- Hauschild, J., Petersen, B., Santiago, Y., Queisser, A.L., Carnwath, J.W., Lucas-Hahn, A., Zhang, L., Meng, X., Gregory, P.D., Schwinzer, R., et al. (2011). Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc. Natl. Acad. Sci. USA 108, 12013-12017. https://doi.org/10.1073/pnas.1106422108
- Ji, S., Losinski, R.L., Cornelius, S.G., Frank, G.R., Willis, G.M., Gerrard, D.E., Depreux, F.F., and Spurlock, M.E. (1998). Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. Am. J. Physiol. 275, R1265-1273.
- Jin, D.I., Lee, S.H., Choi, J.H., Lee, J.S., Lee, J.E., Park, K.W., and Seo, J.S. (2003). Targeting efficiency of a-1,3-galactosyl transferase gene in pig fetal fibroblast cells. Exp. Mol. Med. 35, 572-577. https://doi.org/10.1038/emm.2003.75
- Kim, H.J., Lee, H.J., Kim, H., Cho, S.W., and Kim, J.S. (2009). Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 19, 1279-1288. https://doi.org/10.1101/gr.089417.108
- Li, P., Estrada, J.L., Burlak, C., and Tector, A.J. (2013). Biallelic knockout of the alpha-1,3 galactosyltransferase gene in porcine liver-derived cells using zinc finger nucleases. J. Surg. Res. 181, e39-45. https://doi.org/10.1016/j.jss.2012.06.035
- Mashimo, T., Takizawa, A., Voigt, B., Yoshimi, K., Hiai, H., Kuramoto, T., and Serikawa, T. (2010). Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS One 5, e8870. https://doi.org/10.1371/journal.pone.0008870
- McPherron, A.C., Lawler, A.M., and Lee, S.J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387, 83-90. https://doi.org/10.1038/387083a0
- Rogers, C.S., Stoltz, D.A., Meyerholz, D.K., Ostedgaard, L.S., Rokhlina, T., Taft, P.J., Rogan, M.P., Pezzulo, A.A., Karp, P.H., Itani, O.A., et al. (2008). Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321, 1837-1841. https://doi.org/10.1126/science.1163600
- Schuelke, M., Wagner, K.R., Stolz, L.E., Hubner, C., Riebel, T., Komen, W., Braun, T., Tobin, J.F., and Lee, S.J. (2004). Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 350, 2682-2688. https://doi.org/10.1056/NEJMoa040933
- Wiedenheft, B., Sternberg, S.H., and Doudna, J.A. (2012). RNAguided genetic silencing systems in bacteria and archaea. Nature 482, 331-338. https://doi.org/10.1038/nature10886
- Yang, D., Yang, H., Li, W., Zhao, B., Ouyang, Z., Liu, Z., Zhao, Y., Fan, N., Song, J., Tian, J., et al. (2011). Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res. 21, 979-982. https://doi.org/10.1038/cr.2011.70
- Yu, S., Luo, J., Song, Z., Ding, F., Dai, Y., and Li, N. (2011). Highly efficient modification of beta-lactoglobulin (BLG) gene via zincfinger nucleases in cattle. Cell Res. 21, 1638-1640. https://doi.org/10.1038/cr.2011.153
Cited by
- The societal opportunities and challenges of genome editing vol.16, pp.1, 2015, https://doi.org/10.1186/s13059-015-0812-0
- Meganucleases Revolutionize the Production of Genetically Engineered Pigs for the Study of Human Diseases vol.44, pp.3, 2016, https://doi.org/10.1177/0192623315613160
- Efficient genome editing in cultured cells and embryos of Debao pig and swamp buffalo using the CRISPR/Cas9 system vol.54, pp.5, 2018, https://doi.org/10.1007/s11626-018-0236-8
- Enhanced muscle regeneration in freshwater prawn Macrobrachium rosenbergii achieved through in vivo silencing of the myostatin gene vol.50, pp.5, 2014, https://doi.org/10.1111/jwas.12607
- RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges vol.72, pp.4, 2020, https://doi.org/10.1124/pr.120.019554