References
- M. Chesney, R.J. Elliott, D. Madan, and H. Yang, Diffusion coefficient estimation and asset pricing when risk premia and sensitivities are time varying, Math. Financ. 313 (1993), pp. 85-99.
- A.J. McNeil and R. Frey, Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach, J. Empirical Financ. 7 13 (2000), pp. 271-300. https://doi.org/10.1016/S0927-5398(00)00012-8
- J. Huang, M.G. Subrahmanyam, and G.G. Yu, Pricing and hedging American options: a recursive investigation method, Rev. Financ. Stud. 9 13 (1996), pp. 277-300. https://doi.org/10.1093/rfs/9.1.277
- P. Wilmott, Paul Wilmott on quantitative finance. Wiley, New York, 2000.
- Y. El-Khatib and N. Privault, Computations of Greeks in a market with jumps via the Mulliavin calculus, Financ. Stoch. 8 13 (2004), pp. 161-179. https://doi.org/10.1007/s00780-003-0111-6
- M. Namihira and D.A. Kopriva, Computation of the effects of uncertainty in volatility on option pricing and hedging, Int. J. Comput. Math. 13 89 (2012), pp. 1281-1302. https://doi.org/10.1080/00207160.2012.688819
- F. Black and M. Sholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81 13 (1973), pp. 637-59. https://doi.org/10.1086/260062
- D.J. Duffy, Finite difference methods in financial engineering : a partial differential equation approach, John Wiley and Sons, New York, 2006.
- S. Ikonen and J. Toivanen, Operator splitting methods for American option pricing, Appl. Math. Lett. 17 13 (2004), pp. 809-814. https://doi.org/10.1016/j.aml.2004.06.010
- D. Jeong and J. Kim, A comparison study of ADI and operator splitting methods on option pricing models, J. Comput. Appl. Math. 247 13 (2013), pp. 162-171. https://doi.org/10.1016/j.cam.2013.01.008
- E.G. Haug, The complete guide to option pricing formulas, McGraw-Hill, New York, 1997.
- D. Jeong, J. Kim, and I.S. Wee, An accurate and efficient numerical method for black-scholes equations, Commun. Korean Math. Soc. 24 13 (2009), pp. 617-628. https://doi.org/10.4134/CKMS.2009.24.4.617
Cited by
- A FAST AND ROBUST NUMERICAL METHOD FOR OPTION PRICES AND GREEKS IN A JUMP-DIFFUSION MODEL vol.22, pp.2, 2014, https://doi.org/10.7468/jksmeb.2015.22.2.159
- FINITE DIFFERENCE METHOD FOR THE TWO-DIMENSIONAL BLACK-SCHOLES EQUATION WITH A HYBRID BOUNDARY CONDITION vol.23, pp.1, 2014, https://doi.org/10.12941/jksiam.2019.23.019