참고문헌
- S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, 27 (1979), 1085-1095. https://doi.org/10.1016/0001-6160(79)90196-2
- A. A. Wheeler, W. J. Boettinger and G. B. McFadden, Phase-field model for isothermal phase transitions in binary alloys, Physical Review A, 45 (1992), 7424-7439. https://doi.org/10.1103/PhysRevA.45.7424
- M. Cheng and J. A. Warren, An efficient algorithm for solving the phase field crystal model, Journal of Computational Physics, 227 (2008), 6241-6248. https://doi.org/10.1016/j.jcp.2008.03.012
- Y. Li, H. G. Lee and J. Kim, A fast, robust, and accurate operator splitting method for phase-field simulations of crystal growth, Journal of Crystal Growth, 321 (2011), 176-182. https://doi.org/10.1016/j.jcrysgro.2011.02.042
- Y. Li, D. Lee, H. G. Lee, D. Jeong, C. Lee, D. Yang and J. Kim, A robust and accurate phase-field simulation of snow crystal growth, Journal of the Korean Society for Industrial and Applied Mathematics, 16 (2012), 15-29. https://doi.org/10.12941/jksiam.2012.16.1.015
- L.-Q. Chen and W. Yang, Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics, Physical Review B, 50 (1994), 15752-15756. https://doi.org/10.1103/PhysRevB.50.15752
- I. Steinbach, F. Pezzolla, B. Nestler, M. SeeSSelberg, R. Prieler, G. J. Schmitz and J. L. L. Rezende, A phase field concept for multiphase systems, Physica D, 94 (1996), 135-147. https://doi.org/10.1016/0167-2789(95)00298-7
- D. Fan, C. Geng and L.-Q. Chen, Computer simulation of topological evolution in 2-D grain growth using a continuum diffuse-interface field model, Acta Materialia, 45 (1997), 1115-1126. https://doi.org/10.1016/S1359-6454(96)00221-2
- M. T. Lusk, A phase-field paradigm for grain growth and recrystallization, Proceedings of the Royal Society of London A, 455 (1999), 677-700. https://doi.org/10.1098/rspa.1999.0329
- R. Kobayashi, J. A.Warren andW. C. Carter, A continuum model of grain boundaries, Physica D, 140 (2000), 141-150. https://doi.org/10.1016/S0167-2789(00)00023-3
- M. Benes, V. Chalupecky and K. Mikula, Geometrical image segmentation by the Allen-Cahn equation, Applied Numerical Mathematics, 51 (2004), 187-205. https://doi.org/10.1016/j.apnum.2004.05.001
- J. A. Dobrosotskaya and A. L. Bertozzi, A wavelet-Laplace variational technique for image deconvolution and inpainting, IEEE Transactions on Image Processing, 17 (2008), 657-663. https://doi.org/10.1109/TIP.2008.919367
- L. C. Evans, H. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Communications on Pure and Applied Mathematics, 45 (1992), 1097-1123. https://doi.org/10.1002/cpa.3160450903
- T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature, Journal of Differential Geometry, 38 (1993), 417-461. https://doi.org/10.4310/jdg/1214454300
- M. Katsoulakis, G. T. Kossioris and F. Reitich, Generalized motion by mean curvature with Neumann conditions and the Allen-Cahn model for phase transitions, The Journal of Geometric Analysis, 5 (1995), 255-279. https://doi.org/10.1007/BF02921677
- L. Q. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase field equations, Computer Physics Communications, 108 (1998), 147-158. https://doi.org/10.1016/S0010-4655(97)00115-X
- M. Benes and K. Mikula, Simulation of anisotropic motion by mean curvature-comparison of phase-field and sharp-interface approaches, Acta Mathematica Universitatis Comenianae, 67 (1998), 17-42.
- X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows, Numerische Mathematik, 94 (2003), 33-65. https://doi.org/10.1007/s00211-002-0413-1
- T. Ohtsuka, Motion of interfaces by an Allen-Cahn type equation with multiple-well potentials, Asymptotic Analysis, 56 (2008), 87-123.
- X. Yang, J. J. Feng, C. Liu and J. Shen, Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method, Journal of Computational Physics, 218 (2006), 417-428. https://doi.org/10.1016/j.jcp.2006.02.021
- Q. Du, C. Liu and X. Wang, A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, Journal of Computational Physics, 198 (2004), 450-468. https://doi.org/10.1016/j.jcp.2004.01.029
- J. A. Sethian and J. Strain, Crystal growth and dendritic solidification, Journal of Computational Physics, 98 (1992), 231-253. https://doi.org/10.1016/0021-9991(92)90140-T
- S. Li, J. S. Lowengrub and P. H. Leo, Nonlinear morphological control of growing crystals, Physica D, 208 (2005), 209-219. https://doi.org/10.1016/j.physd.2005.06.021
- D. Li, R. Li and P. Zhang, A cellular automaton technique for modelling of a binary dendritic growth with convection, Applied Mathematical Modelling, 31 (2007), 971-982. https://doi.org/10.1016/j.apm.2006.04.004
- H. Yin and S. D. Felicelli, A cellular automaton model for dendrite growth in magnesium alloy AZ91, Modelling and Simulation in Materials Science and Engineering, 17 (2009), 075011. https://doi.org/10.1088/0965-0393/17/7/075011
- D. Juric and G. Tryggvason, A front-tracking method for dendritic solidification, Journal of Computational Physics, 123 (1996), 127-148. https://doi.org/10.1006/jcph.1996.0011
- D. Stafford, M. J. Ward and B. Wetton, The dynamics of drops and attached interfaces for the constrained Allen-Cahn equation, European Journal of Applied Mathematics, 12 (2001), 1-24.
- S. Chen, B. Merriman, S. Osher and P. Smereka, A simple level set method for solving Stefan problems, Journal of Computational Physics, 135 (1997), 8-29. https://doi.org/10.1006/jcph.1997.5721
- L.-L. Wang and Y. Gu, Efficient dual algorithms for image segmentation using TV-Allen-Cahn type models, Communications in Computational Physics, 9 (2011), 859-877. https://doi.org/10.4208/cicp.221109.290710a
- Z. Xu, H. Huang, X. Li and P. Meakin, Phase field and level set methods for modeling solute precipitation and/or dissolution, Computer Physics Communications, 183 (2012), 15-19. https://doi.org/10.1016/j.cpc.2011.08.005
- A. E. Lobkovsky and J. A.Warren, Phase-field model of crystal grains, Journal of Crystal Growth, 225 (2001), 282-288. https://doi.org/10.1016/S0022-0248(01)00867-3
- B. Nestler and A. A. Wheeler, Phase-field modeling of multi-phase solidification, Computer Physics Communications, 147 (2002), 230-233. https://doi.org/10.1016/S0010-4655(02)00252-7
- J.-W. Choi, H. G. Lee, D. Jeong and J. Kim, An unconditionally gradient stable numerical method for solving the Allen-Cahn equation, Physica A, 388 (2009), 1791-1803. https://doi.org/10.1016/j.physa.2009.01.026
- Y. Li, H. G. Lee, D. Jeong and J. Kim, An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation, Computers and Mathematics with Applications, 60 (2010), 1591-1606. https://doi.org/10.1016/j.camwa.2010.06.041
- Y. Li and J. Kim, Multiphase image segmentation using a phase-field model, Computers & Mathematics with Applications, 62 (2011), 737-745. https://doi.org/10.1016/j.camwa.2011.05.054
- H. Garcke, B. Nestler and B. Stoth, On anisotropic order parameter models for multi-phase systems and their sharp interface limits, Physica D, 115 (1998), 87-108. https://doi.org/10.1016/S0167-2789(97)00227-3
- H. Garcke, B. Nestler and B. Stinner, A diffuse interface model for alloys with multiple components and phases, SIAM Journal on Applied Mathematics, 64 (2004), 775-799. https://doi.org/10.1137/S0036139902413143
- H. Garcke and V. Styles, Bi-directional diffusion induced grain boundary motion with triple junctions, Interfaces and Free Boundaries, 6 (2004), 271-294.
- B. Nestler, H. Garcke and B. Stinner, Multicomponent alloy solidification: Phase-field modeling and simulations, Physical Review E, 71 (2005), 041609. https://doi.org/10.1103/PhysRevE.71.041609
- N. Moelans, B. Blanpain and P. Wollants, A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles, Acta Materialia, 53 (2005), 1771-1781. https://doi.org/10.1016/j.actamat.2004.12.026
- R. Kornhuber and R. Krause, Robust multigrid methods for vector-valued Allen-Cahn equations with logarithmic free energy, Computing and Visualization in Science, 9 (2006), 103-116. https://doi.org/10.1007/s00791-006-0020-2
- D. A. Kay and A. Tomasi, Color image segmentation by the vector-valued Allen-Cahn phase-field model: a multigrid solution, IEEE Transactions on Image Processing, 18 (2009), 2330-2339. https://doi.org/10.1109/TIP.2009.2026678
- L. Vanherpe, F. Wendler, B. Nestler and S. Vandewalle, A multigrid solver for phase field simulation of microstructure evolution, Mathematics and Computers in Simulation, 80 (2010), 1438-1448. https://doi.org/10.1016/j.matcom.2009.10.007
- H. G. Lee and J. Kim, An efficient and accurate numerical algorithm for the vector-valued Allen-Cahn equations, Computer Physics Communications, 183 (2012), 2107-2115. https://doi.org/10.1016/j.cpc.2012.05.013
- L. A. Vese and T. F. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model, International Journal of Computer Vision, 50 (2002), 271-293. https://doi.org/10.1023/A:1020874308076
- C. Samson, L. Blanc-Feraud, G. Aubert and J. Zerubia, A level set model for image classification, International Journal of Computer Vision, 40 (2000), 187-197. https://doi.org/10.1023/A:1008183109594
- J. Lie, M. Lysaker and X.-C. Tai, A variant of the level set method and applications to image segmentation, Mathematics of computation, 75 (2006), 1155-1174. https://doi.org/10.1090/S0025-5718-06-01835-7
- Y. M. Jung, S. H. Kang and J. Shen, Multiphase image segmentation via Modica-Mortola phase transition, SIAM Journal on Applied Mathematics, 67 (2007), 1213-1232. https://doi.org/10.1137/060662708
- W. L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, PA, 1987.
- U. Trottenberg, C. Oosterlee and A. Schuller, Multigrid, Academic Press, London, 2001.
- D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, 42 (1989), 577-685. https://doi.org/10.1002/cpa.3160420503
- S. C. Zhu and A. Yuille, Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18 (1996), 884-900. https://doi.org/10.1109/34.537343
- M. Kass, A. Witkin and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, 1 (1988), 321-331. https://doi.org/10.1007/BF00133570
- N. Paragios and R. Deriche, Geodesic active regions for supervised texture segmentation, The Proceedings of the Seventh IEEE International Conference on Computer Vision, Corfu, Greece 1999.
- T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on Image Processing, 10 (2001), 266-277. https://doi.org/10.1109/83.902291