DOI QR코드

DOI QR Code

Development and Application of Automatic Rainfall Field Tracking Methods for Depth-Area-Duration Analysis

DAD 분석을 위한 자동 강우장 탐색기법의 개발 및 적용

  • Kim, Yeon Su (Hydrology and Water Resources Research Laboratory, Kyoto University) ;
  • Song, Mi Yeon (IWRI, Chungnam National University) ;
  • Lee, Gi Ha (Department of Construction and Disaster Prevention, Kyungpook National University) ;
  • Jung, Kwan Sue (Dept. of Civil Eng., Chungnam National University)
  • 김연수 (교토대학교 수문 및 수자원연구실) ;
  • 송미연 (충남대학교 국제수자원연구소) ;
  • 이기하 (경북대학교 건설방재공학부) ;
  • 정관수 (충남대학교 공과대학 토목공학과)
  • Received : 2014.02.18
  • Accepted : 2014.03.19
  • Published : 2014.04.30

Abstract

This study aims to develop a rainfall field tracking method for depth-area-duration (DAD) analysis and assess whether the proposed tracking methods are able to properly estimate the maximum average areal rainfall (MAAR) within the study area during a rainfall period. We proposed three different rainfall field tracking algorithms (Box-tracking, Point-tracking, Advanced point-tracking) and then applied them to the virtual rainfall field with 1hr duration and also compared DAD curves of each method. In addition, we applied the three tracking methods and a traditional GIS-based tool to the typhoon 'Nari' rainfall event of the Yongdam-Dam watershed and then assess applicability of the proposed methods for DAD analysis. The results showed that Box-tracking was much faster than the other two tracking methods in terms of searching for the MAAR but it was impossible to describe rainfall spatial pattern during its tracking processes. On the other hand, both Point-tracking and Advanced point-tracking provided the MAAR by considering the spatial distribution of rainfall fields. In particular, Advanced point-tracking estimated the MAAR more accurately than Point-tracking in the virtual rainfall field, which has two rainfall centers with similar depths. The proposed automatic rainfall field tracking methods can be used as effective tools to analyze DAD relationship and also calculate areal reduction factor.

본 연구에서는 격자기반의 공간분포 강우장에서 호우지속기간동안 지속시간별 면적최대강우량을 산정할 수 있는 탐색기법을 개발하여 DAD 분석을 실시하고 그 적용성을 평가하고자 한다. 우선, 세 가지 탐색기법(Box-tracking, Point-tracking, Advanced point-tracking)의 알고리즘을 구성하고, 가상의 강우장(1 hr 지속시간)을 대상으로 각 탐색기법의 성능을 검증하였다. 다음으로 용담댐 유역의 실제 강우사상을 선택하여 개발된 탐색기법과 GIS를 이용한 고전적인 방법을 사용하여 DAD 분석을 실시하고 그 결과를 비교 분석하였다. Box-tracking의 경우, Point-tracking과 Advanced point-tracking에 비하여 상대적으로 빠른 검색이 가능하지만, 강우장의 공간분포 형태를 고려하지 못하여 타 탐색기법에 비해 유역크기별 면적최대강우량이 과대 산정되었다. 반면, Point-tracking과 Advanced point-tracking은 강우장의 공간분포 형태를 적절하게 반영하여 면적최대강우량 산정이 가능하였으며, 특히 두개 이상의 호우중심이 존재할 경우 Advanced point-tracking은 Point-tracking보다 우수한 탐색성능을 보여주었다. 따라서 본 연구에서 제안하는 탐색기법은 DAD 분석 및 면적감소계수 계산을 위한 유용한 도구로 활용이 가능할 것으로 판단된다.

Keywords

References

  1. Arizona Department of Water Resources. (2013). "Probable Maximum Precipitation Study for Arizona PMP Evaluation Tool Description and Usage." Manual.
  2. Bell, F.C. (1976). The Areal Reduction Factor in Rainfall Frequency Estimation. Institute of hydrology, Report No. 35.
  3. Durrans, S.R., Julian, L.T., and Yekta, M. (2002). "Estimation of depth area relationships using radar data." Journal of Hydrologic Engineering, Vol. 7, No. 5 pp. 356-367. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:5(356)
  4. Guo, J.C.Y. (2012). "Storm Centering Approach for Flood Predictions from Large Watersheds." Journal of Hydrologic Engineering, Vol. 17, No. 9, pp. 960-964. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000540
  5. Kim, B.S. (2009). "Adaptation Strategies for Extreme Flood to Cope with Future Climate Change." Korean Scociety of Civil Engineers, Vol. 57, No. 9, pp. 27-41.
  6. Kim, M.M., Jung, C.S., Yeo, W.G., and Sim, J.H. (2009). "Assessment of Design Rainfall for River Improvement due to Climate Change." Meteorological Technology and Policy, Vol. 2, No. 2, pp. 28-37.
  7. Kim, N.W., and Won, Y.S. (2004). "DAD Analysis on Storm Movement." Journal of Korea Water Resources Association, Vol. 37, No. 5, pp. 437-448. https://doi.org/10.3741/JKWRA.2004.37.5.437
  8. Lee, G.H., Lee, K.H., Jung, K.S., and Jang C.L. (2012) "A Comparative Analysis on Slope Stability Using Specific Catchment Area Calculation." Journal of Korea Water Resources Association, Vol. 45, No. 7, pp. 643-656. https://doi.org/10.3741/JKWRA.2012.45.7.643
  9. Svensson, C., and Jones, D.A. (2010). "Review of methods for deriving areal reduction factors." Journal of Flood Risk Management, Vol. 3, pp. 232-245. https://doi.org/10.1111/j.1753-318X.2010.01075.x
  10. Tarun, D.G. (2005). Transformation of Point Rainfall to Areal Rainfall by Estimating Areal Reduction Factors, using Radar Data, For Texas. Master Thesis, Texas A&M University.
  11. WMO(1969). Manual for Depth-Area-Duration Analysis of Storm Precitation. Technical Paper 129, Geneva.

Cited by

  1. DAD Analysis of Yongdam Dam Watershed Using the Cell-Based Automatic Rainfall Field Tracking Methods vol.17, pp.3, 2014, https://doi.org/10.11108/kagis.2014.17.3.068