References
- M. Chae, K. Kang, and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst. 33 (2013), no. 6, 2271-2297.
- A. Chertock, K. Fellner, A. Kurganov, A. Lorz, and P. A. Markowich, Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach, J. Fluid Mech. 694 (2012), 155-190. https://doi.org/10.1017/jfm.2011.534
- R. Duan, A. Lorz, and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations 35 (2010), no. 9, 1635-1673. https://doi.org/10.1080/03605302.2010.497199
- M. D. Francesco, A. Lorz, and P. Markowich, Chemotaxis-fluid coupled model for swim-ming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Dis-crete Contin. Dyn. Syst. 28 (2010), no. 4, 1437-1453. https://doi.org/10.3934/dcds.2010.28.1437
- S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic type, J. Differential Equations 252 (2012), no. 2, 1421-1440. https://doi.org/10.1016/j.jde.2011.02.012
- E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), no. 3, 399-415. https://doi.org/10.1016/0022-5193(70)90092-5
- E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol. 30 (1971), no. 2, 225-234. https://doi.org/10.1016/0022-5193(71)90050-6
- O. A. Ladyzhenskaya, Global solvability of a boundary value problem for the Navier-Stokes equations in the case of two spatial variables, Doklady of the USSR 123 (1958), 427-429.
- J.-G. Liu and A. Lorz, A coupled chemotaxis-fluid model, I. H. Poincare, Analyse Non Lineaire 28 (2011), no. 5, 643-652.
- A. Lorz, Coupled chemotaxis fluid model, Math. Models Meth. Appl. Sci. 20 (2010), no. 6, 987-1004. https://doi.org/10.1142/S0218202510004507
- C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15 (1953), 311-338. https://doi.org/10.1007/BF02476407
- Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations 227 (2006), no. 1, 333-364. https://doi.org/10.1016/j.jde.2006.03.003
- Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst. 32 (2012), no. 5, 1901-1914. https://doi.org/10.3934/dcds.2012.32.1901
- Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincare Anal. Non Lineaire. 30 (2013), no. 1, 157-178 https://doi.org/10.1016/j.anihpc.2012.07.002
- I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler, and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, PNAS 102 (2005), no. 7, 2277-2282. https://doi.org/10.1073/pnas.0406724102
- D. Vorotnikov, Weak solutions for a bioconvection model related to bacillus subtilis, to appear in Comm. Math. Sci.
- M. Winkler, Global large data solutions in a chemotaxis-(Navier-)Stokes system model-ing cellular swimming in fluid drops, Comm. Partial Differential Equations 37 (2012), no. 2, 319-351. https://doi.org/10.1080/03605302.2011.591865
Cited by
- Hölder continuity of Keller–Segel equations of porous medium type coupled to fluid equations vol.263, pp.4, 2017, https://doi.org/10.1016/j.jde.2017.03.042
- Existence of global solutions for a chemotaxis-fluid system with nonlinear diffusion vol.57, pp.4, 2016, https://doi.org/10.1063/1.4947107
- ASYMPTOTIC BEHAVIORS OF SOLUTIONS FOR AN AEROTAXIS MODEL COUPLED TO FLUID EQUATIONS vol.53, pp.1, 2016, https://doi.org/10.4134/JKMS.2016.53.1.127
- Long-term behaviour in a chemotaxis-fluid system with logistic source vol.26, pp.11, 2016, https://doi.org/10.1142/S021820251640008X
- Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities vol.55, pp.4, 2016, https://doi.org/10.1007/s00526-016-1027-2
- Global existence of weak solutions for the 3D chemotaxis-Navier–Stokes equations vol.35, 2017, https://doi.org/10.1016/j.nonrwa.2016.11.006
- Existence of Weak Solutions in Wasserstein Space for a Chemotaxis Model Coupled to Fluid Equations vol.49, pp.4, 2017, https://doi.org/10.1137/16M1083232
- A regularity condition and temporal asymptotics for chemotaxis-fluid equations vol.31, pp.2, 2018, https://doi.org/10.1088/1361-6544/aa92ec