DOI QR코드

DOI QR Code

GLOBAL EXISTENCE OF WEAK SOLUTIONS FOR A KELLER-SEGEL-FLUID MODEL WITH NONLINEAR DIFFUSION

  • Received : 2013.11.21
  • Published : 2014.05.01

Abstract

We consider the Cauchy problem for a Keller-Segel-fluid model with degenerate diffusion for cell density, which is mathematically formulated as a porus medium type of Keller-Segel equations coupled to viscous incompressible fluid equations. We establish the global-in-time existence of weak solutions and bounded weak solutions depending on some conditions of parameters such as chemotactic sensitivity and consumption rate of oxygen for certain range of diffusive exponents of cell density in two and three dimensions.

Keywords

References

  1. M. Chae, K. Kang, and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst. 33 (2013), no. 6, 2271-2297.
  2. A. Chertock, K. Fellner, A. Kurganov, A. Lorz, and P. A. Markowich, Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach, J. Fluid Mech. 694 (2012), 155-190. https://doi.org/10.1017/jfm.2011.534
  3. R. Duan, A. Lorz, and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations 35 (2010), no. 9, 1635-1673. https://doi.org/10.1080/03605302.2010.497199
  4. M. D. Francesco, A. Lorz, and P. Markowich, Chemotaxis-fluid coupled model for swim-ming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Dis-crete Contin. Dyn. Syst. 28 (2010), no. 4, 1437-1453. https://doi.org/10.3934/dcds.2010.28.1437
  5. S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic type, J. Differential Equations 252 (2012), no. 2, 1421-1440. https://doi.org/10.1016/j.jde.2011.02.012
  6. E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), no. 3, 399-415. https://doi.org/10.1016/0022-5193(70)90092-5
  7. E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol. 30 (1971), no. 2, 225-234. https://doi.org/10.1016/0022-5193(71)90050-6
  8. O. A. Ladyzhenskaya, Global solvability of a boundary value problem for the Navier-Stokes equations in the case of two spatial variables, Doklady of the USSR 123 (1958), 427-429.
  9. J.-G. Liu and A. Lorz, A coupled chemotaxis-fluid model, I. H. Poincare, Analyse Non Lineaire 28 (2011), no. 5, 643-652.
  10. A. Lorz, Coupled chemotaxis fluid model, Math. Models Meth. Appl. Sci. 20 (2010), no. 6, 987-1004. https://doi.org/10.1142/S0218202510004507
  11. C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15 (1953), 311-338. https://doi.org/10.1007/BF02476407
  12. Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations 227 (2006), no. 1, 333-364. https://doi.org/10.1016/j.jde.2006.03.003
  13. Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst. 32 (2012), no. 5, 1901-1914. https://doi.org/10.3934/dcds.2012.32.1901
  14. Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincare Anal. Non Lineaire. 30 (2013), no. 1, 157-178 https://doi.org/10.1016/j.anihpc.2012.07.002
  15. I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler, and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, PNAS 102 (2005), no. 7, 2277-2282. https://doi.org/10.1073/pnas.0406724102
  16. D. Vorotnikov, Weak solutions for a bioconvection model related to bacillus subtilis, to appear in Comm. Math. Sci.
  17. M. Winkler, Global large data solutions in a chemotaxis-(Navier-)Stokes system model-ing cellular swimming in fluid drops, Comm. Partial Differential Equations 37 (2012), no. 2, 319-351. https://doi.org/10.1080/03605302.2011.591865

Cited by

  1. Hölder continuity of Keller–Segel equations of porous medium type coupled to fluid equations vol.263, pp.4, 2017, https://doi.org/10.1016/j.jde.2017.03.042
  2. Existence of global solutions for a chemotaxis-fluid system with nonlinear diffusion vol.57, pp.4, 2016, https://doi.org/10.1063/1.4947107
  3. ASYMPTOTIC BEHAVIORS OF SOLUTIONS FOR AN AEROTAXIS MODEL COUPLED TO FLUID EQUATIONS vol.53, pp.1, 2016, https://doi.org/10.4134/JKMS.2016.53.1.127
  4. Long-term behaviour in a chemotaxis-fluid system with logistic source vol.26, pp.11, 2016, https://doi.org/10.1142/S021820251640008X
  5. Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities vol.55, pp.4, 2016, https://doi.org/10.1007/s00526-016-1027-2
  6. Global existence of weak solutions for the 3D chemotaxis-Navier–Stokes equations vol.35, 2017, https://doi.org/10.1016/j.nonrwa.2016.11.006
  7. Existence of Weak Solutions in Wasserstein Space for a Chemotaxis Model Coupled to Fluid Equations vol.49, pp.4, 2017, https://doi.org/10.1137/16M1083232
  8. A regularity condition and temporal asymptotics for chemotaxis-fluid equations vol.31, pp.2, 2018, https://doi.org/10.1088/1361-6544/aa92ec