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GLOBAL EXISTENCE OF WEAK SOLUTIONS FOR A

KELLER-SEGEL-FLUID MODEL WITH NONLINEAR

DIFFUSION

Yun-Sung Chung, Kyungkeun Kang, and Jaewoo Kim

Abstract. We consider the Cauchy problem for a Keller-Segel-fluid mo-
del with degenerate diffusion for cell density, which is mathematically
formulated as a porus medium type of Keller-Segel equations coupled
to viscous incompressible fluid equations. We establish the global-in-
time existence of weak solutions and bounded weak solutions depending
on some conditions of parameters such as chemotactic sensitivity and
consumption rate of oxygen for certain range of diffusive exponents of
cell density in two and three dimensions.

1. Introduction

In this paper, we consider a mathematical model that is originated with
dynamics of swimming bacteria, so called Bacillus subtilis, which live in fluid
and consume oxygen. To be more precise, we study the Cauchy problem on the
coupled Keller-Segel-Navier-Stokes equations in R

d × (0, T ) with 0 < T ≤ ∞
and d = 2, 3:

(1)











∂tn+ u · ∇n = ∆n1+α −∇ · (χ(c)n∇c) ,

∂tc+ u · ∇c = ∆c− κ(c)n,

∂tu+ τ(u · ∇)u+∇p = ∆u− n∇φ, div u = 0,

where n, c, u and p are the cell density, oxygen concentration, velocity field
and pressure of the fluid, respectively. Here τ is a constant such that the
case that τ = 1 corresponds to the Navier-Stokes equations and if τ = 0,
the fluid equations becomes the Stokes system. Under our consideration, the
Navier-Stokes system is studied for two dimensions and the Stokes system is
considered for three dimensions. The functions χ : R → R and κ : R →
R represent the chemotactic sensitivity and consumption rate of oxygen. To
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describe the fluid motions, Boussinesq approximation is used to denote the
effect due to heavy bacteria. The time-independent function φ = φ(x) denotes
the potential function produced by different physical mechanisms, e.g., the
gravitational force or centrifugal force. Thus, φ(x) = axd is one example of
gravity force, and φ(x) = φ(|x|) is an example of centrifugal force. In this
paper, we assume that φ is smooth in spatial variable, independent of time
variable and ‖∇φ‖L∞(Rd) <∞.

The chemotaxis-fluid system above has been proposed in [15] by Tuval et
al. for the case α = 0 and numerical simulation of plumes was performed
in [2] in two dimensions. For the case χ(c) ≡ χ, Lorz [10] showed the local
existence of solutions for the chemotaxis-Stokes system in two dimensional
bounded domain with the mixed boundary conditions and chemotaxis-Navier-
Stokes system in three dimensional bounded domain with boundary conditions
∂νn = ∂νc = u = 0. One can refer to, for example, [3], [9], [17] and [1] for
further results in case that α = 0.

Our main purpose of this paper is to establish existence of weak and bounded
weak solutions for the system (1), when the equation of n is of porous medium
type, i.e., α > 0. In [4], Francesco, Lorz and Markowich showed the global
existence of a bounded solution to (1) on a bounded domain in R

2 with the
boundary conditions ∂νn

1+α = ∂νc = u = 0, when α ∈ (1/2, 1]. Tao and
Winkler [13] extended the result to the case α > 0 on a bounded domain in R

2,
in case that the fluid equation is the Stokes system. In [9], Liu and Lorz proved
the global existence of a weak solution in R

3 when α = 1/3. Some special case,
i.e., χ = 1 and κ(c) = c, was studied in [14] and it was shown that if α > 1/7,
bounded weak solutions exist in R

3, when fluid equation is the Stokes system.
Recently, Vorotnikov [16] proved existence of weak solutions in the case that a
bacterial growth term is added to (1).

Here we make some comments on Keller-Segel model of porus medium type,
which is given as

(2) nt = ∆n1+α −∇ · (χn∇c), τct = ∆c− βc+ γn,

where χ is the sensitivity, β decay rate of c and γ is production rate of n.
The system (2) consists of a system of the dynamics of cell density n and
the concentration of chemical attractant substance c. In case that α = 0, we
refer to Patlak-Keller-Segel equation, which was suggested by Patlak [11] and
Keller-Segel [6, 7] and it has been extensively studied by many authors and we
do not list relevant references here. For the case of porus medium equation,
in [5] Ishida and Yokota showed that if α > 1/3, bounded weak solutions of
(2) exist in dimension three (more general type of equations were considered
in general domain in [5] and see also Sugiyama and Kunii [12] for the case of
parabolic-elliptic case).

As mentioned earlier, our aim is to obtain global existence of weak and
bounded weak solutions for the system (1). We start with defining the notion
of weak solutions.
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Definition 1.1. Let d = 2 or 3, α > 0 and 0 < T < ∞. A triple (n, c, u) is
said to be a weak solution of the system (1) if the followings are satisfied:

(i) n and c are non-negative functions and u is a vector function defined in
R

d × (0, T ) such that

n(1 + |x|+ | logn|) ∈ L∞(0, T ;L1(Rd)), ∇n
1+α
2 ∈ L2(0, T ;L2(Rd)),

c ∈ L∞(0, T ;H1(Rd)) ∩ L2(0, T ;H2(Rd)), c ∈ L∞(Rd × [0, T )),

u ∈ L∞(0, T ;L2(Rd)) ∩ L2(0, T ;H1(Rd).

(ii) (n, c, u) satisfies the equation (1) in the sense of distributions, namely,
∫ T

0

∫

Rd

(

−nϕt+∇n1+α · ∇ϕ+nu · ∇ϕ+nχ(c)∇c · ∇ϕ
)

dxdt=

∫

Rd

n0ϕ(·, 0)dx,

∫ T

0

∫

Rd

(−cϕt+∇c · ∇ϕ+cu · ∇ϕ+nκ(c)ϕ) dxdt =

∫

Rd

c0ϕ(·, 0)dx,

∫ T

0

∫

Rd

(−u · ψt+∇u · ∇ψ−(τ(u · ∇)u) · ψ+n∇φ · ψ) dxdt=

∫

Rd

u0 · ψ(·, 0)dx

for all test functions ϕ ∈ C∞
0

(

R
d × [0, T )

)

and ψ ∈ C∞
0

(

R
d × [0, T ),Rd

)

with
∇ · ψ = 0.

The chemotactic sensitivity χ and consumption rate of oxygen κ are L∞
loc

functions defined on [0,∞) with the following hypothesis:

(A) κ(·) ≥ 0 and κ(0) = 0.

We further assume additional hypotheses of the following in accordance with
the range of α > 0.

(B1) χ ∈ C1 with χ′(·) ≥ 0.
(B2) χ ∈ C1 with χ′(·) ≥ χ0 for some constant χ0 > 0.
(B3) κ ∈ C1 with κ′(·) ≥ κ0 for some constant κ0 > 0.

Here we present two different types of assumptions on chemotatic sensitivity χ
and consumption rate κ together with the range of α in dimension three. The
first one is related to weak solutions.

Assumption 1.2. Let d = 3. We assume that one of the following holds:

(i) α > 1
3 and χ satisfies (B1).

(ii) α > 1
6 and χ satisfies (B2).

(iii) 1
6 < α < 1 and κ satisfies (B3).

(iv) α > 1
6 , χ satisfies (B1) and κ satisfies (B3).

Another assumption is prepared for bounded weak solutions (see Definition
1.6).

Assumption 1.3. Let d = 3. We assume that one of the following holds:

(i) α ≥ 1
2 and χ satisfies (B1).

(ii) α ≥ 1
4 and χ satisfies (B2).
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(iii) 1
4 ≤ α < 1 and κ satisfies (B3).

(iv) α ≥ 1
4 , χ satisfy (B1) and κ satisfy (B3).

Remark 1.4. We expect that the restriction, α < 1, can be removed in Assump-
tion 1.2(iii) and Assumption 1.3(iii). It is, however, unclear at this moment
and remains to be a future work.

The first main result of this paper is the existence of global-in-time weak
solution of the system (1) in spatial dimension three. More precisely, the result
reads as follows:

Theorem 1.5. Let d = 3 and τ = 0. Suppose that κ satisfies the hypothesis

(A) and the initial datum (n0, c0, u0) satisfies

(3) n0(1 + |x|+ | logn0|) ∈ L1(Rd), c0 ∈ L∞(Rd) ∩H1(Rd), u0 ∈ H1(Rd).

Assume further that Assumption 1.2 holds. Then, there exists a weak solution

(n, c, u) for the system (1). Moreover, if the initial mass ‖n0‖L1(Rd) is suffi-

ciently small, then the limiting case α = 1/3 or α = 1/6 can be included in the

hypothesis (i) ∼ (iv) of Assumption 1.2.

Next we introduce another notion of weak solutions, so called bounded weak

solutions, which show a bit higher regularity of solutions compared to ones
defined in Definition 1.1. To be more precise, the notion of bounded weak
solutions is defined as follows:

Definition 1.6. Let d = 2, 3, α > 0 and T > 0. A triple (n, c, u) is said to
be a bounded weak solution of the system (1) if (n, c, u) is a weak solution in
Definition 1.1 and furthermore satisfies the following: For any p ∈ [1,∞] and
q ∈ [2,∞)

(i) n ∈ L∞(0, T ;Lp(Rd)), ∇n
α+q

2 ∈ L2(0, T ;L2(Rd)).
(ii) c ∈ Lq(0, T ;W 2,q(Rd)), ct ∈ Lq(0, T ;Lq(Rd)).
(iii) u ∈ L∞(0, T ;W 1,q(Rd)), ut,∆u ∈ Lq(0, T ;Lq(Rd)).

If the range of α in the hypothesis (i)∼(iv) in Theorem 1.5 is a little restric-
tive and initial data are a bit more regular, we can construct bounded weak
solutions. More precisely, our second result reads as follows:

Theorem 1.7. Let d = 3, τ = 0. Suppose that κ satisfies the hypothesis (A)
and the initial datum (n0, c0, u0) satisfies (3) as well as

(4) n0 ∈ L∞(Rd), c0 ∈ W 1,q(Rd), u0 ∈W 1,q(Rd) q <∞.

Assume further that Assumption 1.3 holds. Then, there exists a bounded weak

solution (n, c, u) for the system (1).

In Tables 1 and 2, we summarize our results in Theorem 1.5 and Theorem
1.7 regarding the range of α depending on the hypothesis (i) ∼ (iv).

We remark that Tao and Winkler established existence of bounded weak
solutions in [14] in smoothly bounded convex domains for α > 1/7 but as
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Table 1. Conditions for the existence of weak solutions (3D case)

κ χ′ χ′ κ′ α
(A) (B1) (B2) (B3)

© © © ©

© © © × α > 1
6

© © × ©

© © × × α > 1
3

© × × © 1
6
< α < 1

© × × × unknown
© : valid × : invalid

Table 2. Conditions for the existence of bounded weak solu-
tions (3D case)

κ χ′ χ′ κ′ α
(A) (B1) (B2) (B3)

© © © ©

© © © × α ≥ 1
4

© © × ©

© © × × α ≥ 1
2

© × × © 1
4
≤ α < 1

© × × × unknown
© : valid × : invalid

mentioned earlier, it is a kind of special case, namely χ = 1 and κ(c) = c. In
our case χ and κ are a bit more general and we do not know whether or not
our restriction α ≥ 1/4 can be extended to 1/7.

So far, we have considered the three dimensional case. If the spatial domain
is two dimensional plane, then the fluid equations can be extended to the
Navier-Stokes equations, i.e. τ = 1 and the existence of bounded weak solutions
can be proved under a weaker assumption on α. To be more precise, we obtain
the third main result:

Theorem 1.8. Let d = 2 and τ = 1. Suppose that κ satisfies the hypothesis (A)
and the initial datum (n0, c0, u0) satisfies (4) as well as (3). Assume further

that one of the following holds:

(i) χ satisfies (B1) and α > 0.
(ii) κ satisfies (B3) and 0 < α < 1.

Then, there exists a bounded weak solution (n, c, u) for the system (1). More-

over, if the initial mass ‖n0‖L1(Rd) is sufficiently small, then the limiting case

α = 0 can be included in the hypothesis (i) and (ii).

We remark that, as previously stated, global existence of bounded solution
was obtained in [13] regarding the case α > 0 on a bounded domain in R

2, in
case that the fluid equation is the Stokes system. Compared to [13], our result
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is for the case of whole space with different assumptions on χ and κ and, in
addition, we treat the case of the Navier-Stokes equations in R

2.
This paper is organized as follows. In Section 2, some estimates of solutions

of an approximate system of (1) are given. Section 3 is devoted to present the
proofs of the main results.

2. Some estimates of solutions of a regularized system

Throughout this section, we study the solutions of the approximate problem
of (1) given by

(5)











∂tn̺ + u̺ · ∇n̺ = ∆(n̺ + ̺)1+α −∇ · (χ(c̺)n̺∇c̺) ,

∂tc̺ + u̺ · ∇c̺ = ∆c̺ − κ(c̺)n̺,

∂tu̺ + τ(u̺ · ∇)u̺ +∇p̺ = ∆u̺ − n̺∇φ, div u̺ = 0,

in R
d × (0, T ) with smooth initial data (n0̺, c0̺, u0̺), where ̺ ∈ (0, 1).

It is known that, due to the standard theory of existence and regularity
as done in [4] and [13], there exists a classical solution of the equation (5)
locally in time for each ̺ ∈ (0, 1). The main objective of this section is to
derive appropriate uniform estimates, independent of ̺, of the solutions. The
estimates are crucially used in Section 3 to extend the above local solution
to any given time interval (0, T ) and to construct the weak solutions and the
bounded weak solutions of the equation (1).

We start with some notations. Let Ω be an open domain in R
d with d = 2, 3.

For 1 ≤ q ≤ ∞, we denote by W k,q(Ω) the usual Sobolev spaces, namely
W k,q(Ω) = {f ∈ Lq(Ω) : Dαf ∈ Lq(Ω), 0 ≤ |α| ≤ k}. The set of q-th power
Lebesgue integrable functions on Ω is denoted by Lq(Ω). In what follows, for
simplicity, ‖ · ‖p denotes ‖ · ‖Lp(Rd) for 1 ≤ p ≤ ∞, unless there is any confusion

to be expected. We also denote by W−k,q′ (Ω) dual space of W k,q
0 (Ω), where q

and q′ are Hölder conjugates. The letter C = C(∗, . . . , ∗) is used to represent
a generic constant, depending on ∗, . . . , ∗, which may change from line to line.

2.1. Uniform estimates for weak solutions

In the following lemma, we give an estimate of solutions of (5) under the
hypothesis (A) and the Assumption 1.2. The estimate is used in Section 3 to
construct the weak solution of the equation (1). For the sake of simplicity,
throughout Section 2.1 ∼ 2.3, we denote n̺, c̺ and u̺ by n, c and u. Also, we
define functionals E(t) and D(t) as follows:

(6) E(t) :=

∫

Rd

n(t) (logn(t) + 2〈x〉) dx+ ‖∇c(t)‖22 + ‖ω(t)‖22

and

(7) D(t) := ‖∇n(t)
1+α
2 ‖22 + ‖∇2c(t)‖22 + ‖∇ω(t)‖22,

where 〈x〉 = (1 + |x|2)
1
2 and ω := ∇× u.
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Lemma 2.1. Let d = 3, τ = 0 and T > 0 be given. Suppose that (n, c, u) is a

classical solution for the system (5)̺, ̺ ∈ (0, 1) with the smooth initial datum

(n0̺, c0̺, u0̺) satisfies the initial condition (3). Assume further that κ satisfies

the hypothesis (A) and the Assumption 1.2 holds. Then, for any 0 < t ≤ T ,
E(t) and D(t) defined in (6)-(7) satisfy

(8)
d

dt
E(t) +D(t) < CE(t).

Moreover, it satisfies the following energy inequality

(9)

∫

R3

(

n(|logn|+ 2〈x〉) +
|∇c|2

2
+

|ω|2

2

)

dx

+

∫ T

0

‖∇ω‖2L2 + ‖∇n
1+α
2 ‖2L2 + ‖∆c‖2L2dt ≤ C,

with C = C(T, ‖c0̺‖L∞, ‖〈x〉n0̺‖L1 , ‖∇c0̺‖L2 , ‖n0̺| lnn0̺|‖L1 , ‖∇φ‖L∞,

‖φ‖L∞). In addition, if the initial mass ‖n0̺‖L1(Rd) is sufficiently small, then

the limiting case α = 1/3 or α = 1/6 can be included in the above hypothesis

(i) ∼ (iv) of Assumption 1.2.

Proof. We first consider the case (i) in the Assumption 1.2. We observe, due to
maximum principle, that ‖c‖L∞(QT ) ≤ ‖c0‖L∞(Rd), whereQT = R

d×[0, T ). We

also note that the total mass of n is preserved, i.e., ‖n(t)‖L1(Rd) ≡ ‖n0‖L1(Rd).

Multiplying (5)1 with (1 + logn) and integrating it parts, we have

d

dt

∫

R3

n logndx+

∫

R3

∇ logn · ∇(n+ ̺)1+αdx =

∫

R3

∇n · (χ(c)∇c) dx.

Since ∇ logn · ∇n = 4|∇n1/2|2, we have
∫

R3

∇ logn · ∇(n+ ̺)1+αdx =

∫

R3

∇ logn · (1 + α)(n+ ̺)α∇n dx

≥

∫

R3

∇ logn · (1 + α)nα∇n dx

=
4

1 + α

∥

∥

∥
∇n

1+α
2

∥

∥

∥

2

2
.

Thus we have

d

dt

∫

R3

n logndx+
4

1 + α

∥

∥

∥
∇n

1+α
2

∥

∥

∥

2

2
≤

∫

R3

∇n · (χ(c)∇c) dx

= −

∫

R3

nχ′(c) |∇c|
2
dx−

∫

R3

nχ(c)∆c dx.

Note that using Young’s inequality, we obtain

(10)
d

dt

∫

R3

n logn+
4

1 + α
‖∇n

1+α
2 ‖22 < sup(|χ(c)|)

(

ǫ1‖∆c‖
2
2 + C(ǫ1)‖n‖

2
2

)

,
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where ǫ1 > 0 is a small number, which will be specified later. On the other
hands, since 6/(2+3α) < 2 via α > 1/3, it follows from the energy conservation
of n(x, t), Sobolev embedding and the Young’s inequality that

(11) ‖n‖22 ≤ C‖n‖
1+3α
2+3α

1 ‖∇n
1+α
2 ‖

6
2+3α

2 ≤ ‖n0‖
1+3α
2+3α

1

(

C(ǫ2) + ǫ2‖∇n
1+α
2 ‖22

)

,

where ǫ2 > 0 is a small number depending on ǫ1. Combining the above two
results, we conclude that

(12)
d

dt

∫

R3

n logndx+
4

1 + α
‖∇n

1+α
2 ‖22 < C + ǫ1‖∆c‖

2
2 + C(ǫ1)ǫ2‖∇n

1+α
2 ‖22.

Multiplying (5)2 with −∆c and integrating gives

1

2

d

dt
‖∇c‖22 + ‖∆c‖22 = −

∫

R3

∇c · ∇(u · ∇c)dx+

∫

R3

∆cκ(c)n dx

≤ −

∫

R3

∇c · ∇(u · ∇c)dx+ sup(κ(c))

∫

R3

|n||∆c|dx

:= (I) + (II).

It follows from divergence free condition of u that

(13) (I) = −

∫

R3

∑

i,j

∂ic ∂jc ∂iuj =

∫

R3

∑

i,j

c∂j∂ic ∂iuj ≤ Cǫ‖ω‖
2
2 + ǫ‖∇2c‖22.

Using the same method to (II) as in (12), we observe that

(14)
d

dt
‖∇c‖22+‖∆c‖22 ≤ C(ǫ4, ǫ5)+C(ǫ3)‖ω‖

2
2+(ǫ3+ǫ4)‖∇

2c‖22+ǫ5‖∇n
1+α
2 ‖22,

where ǫ3, ǫ4 and ǫ5 are small numbers to be specified later. Multiplying ω with
the vorticity equations for u and integrating it by parts gives

(15)
1

2

d

dt
‖ω‖22 + ‖∇ω‖22 ≤ ‖∇φ‖L∞(R3)

∫

R3

|n||∇ω|dx.

Following similar procedures for deriving the estimate (12), we note that

(16)
1

2

d

dt
‖ω‖22 + ‖∇ω‖22 ≤ C(ǫ6, ǫ7) + ǫ6‖∇ω‖

2
2 + ǫ7‖∇n

1+α
2 ‖22,

where ǫ6 and ǫ7 are small numbers to be given later. Finally, in order to bound
∫

n logn in (12), multiply (5)1 by the function 〈x〉 = (1+ |x|2)1/2 and integrate
it. Then we have

d

dt

∫

R3

〈x〉ndx =

∫

R3

nu · ∇〈x〉dx+

∫

R3

∆(n+ ̺)1+α〈x〉dx+

∫

R3

∇〈x〉 ·nχ(c)∇c.

We estimate the second term, denote by J , in the righthand side. The inte-
grating by parts gives

(17) J :=

∫

R3

∆(n+ ̺)1+α〈x〉dx = −(α+ 1)

∫

R3

(n+ ̺)α∇n · ∇〈x〉dx.
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In case that 0 < α < 1, using (n+ ̺)ℓ ≤ Cℓ(n
ℓ + ̺ℓ) for any ℓ > 0, we have

J = (α+ 1)α

∫

R3

(n+ ̺)α−1n∇n · ∇〈x〉dx + (1 + α)

∫

R3

(n+ ̺)αn∆〈x〉dx

= (α+ 1)α

∫

R3

(

n

n+ ̺

)1−α

nα∇n · ∇〈x〉dx + (1 + α)

∫

R3

(n+ ̺)αn∆〈x〉dx

≤ C(α)

(
∫

R3

∣

∣

∣
n

1+α
2 ∇n

1+α
2

∣

∣

∣
|∇〈x〉| dx+

∫

R3

(n1+α + n)∆〈x〉dx

)

,

where we used that ∆〈x〉 > 0. On the other hands, in case that α ≥ 1, taking
integration by part to (17) for k − 1 times with k = [1 + α], we have

J = (−1)k
(

α+ 1

k

)
∫

R3

(n+ ̺)α−k+1∇nk∇〈x〉dx

+

k−1
∑

j=1

(−1)j
(

α+ 1

j

)
∫

R3

(n+ ̺)α−j+1nj∆〈x〉dx.

Hence, using Young’s inequality and ∆〈x〉 > 0, we obtain

J ≤ C(α)

(
∫

R3

∣

∣∇n1+α +∇nk
∣

∣ |∇〈x〉| dx+

∫

R3

(n1+α + n)∆〈x〉dx

)

≤ C(α)

(
∫

R3

(∣

∣

∣
n

1+α
2 ∇n

1+α
2

∣

∣

∣
+
∣

∣

∣
nk− 1+α

2 ∇n
1+α
2

∣

∣

∣

)

|∇〈x〉|

+

∫

R3

(n1+α + n)∆〈x〉

)

.

Since ∇〈x〉,∆〈x〉 ∈ L∞ and k ≤ 1 + α, via ‖n‖
1+α
1+α ≤ ‖n0‖

2+2α
2+3α

1

∥

∥

∥
∇n

1+α
2

∥

∥

∥

6α
3α+2

2
and Young’s inequality, we have

d

dt

∫

R3

〈x〉ndx =

∫

R3

nu · ∇〈x〉 +

∫

R3

(n+ ̺)1+α∆〈x〉 +

∫

R3

∇〈x〉 · nχ(c)∇c

≤ C
(

1 + ‖u‖22 + ‖∇c‖22
)

+
(

C(ǫ8) + ǫ8‖∇n
1+α
2 ‖22

)

,(18)

where ǫ8 is a small number to be specified later. We then obtain the following
estimate (see also [9] and [1]):

(19)

∫

R3

n| logn|dx ≤

∫

R3

n logndx+ 2

∫

R3

〈x〉ndx + C.

By adding (12), (14), (16) and (18) with the choices of sufficiently small
ǫ1, . . . , ǫ8 > 0, the estimate (8) is achieved. Combining Gronwall’s inequal-
ity for (8) and the estimate (19), we obtain the energy inequality (9).

Suppose that α = 1/3. We have the following estimate:

(20) ‖n‖22 ≤ C‖n‖
2
3

1 ‖n‖
4
3

4 ≤ C‖n0‖
2
3

1 ‖∇n
1+α
2 ‖22.
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Using (20) instead of (11) and applying the same procedure what is used for
the case α > 1/3, we obtain the following estimates for α = 1/3:

(21)
d

dt

∫

R3

n logndx+
4

1 + α
‖∇n

1+α
2 ‖22 < ǫ1‖∇

2c‖22+C(ǫ1)‖n0‖
2
3

1 ‖∇n
1+α
2 ‖22,

(22)
d

dt
‖∇c‖22+‖∆c‖22 ≤ C(ǫ2)‖ω‖

2
2+(ǫ2+ǫ3)‖∆c‖

2
2+C(ǫ3)‖n0‖

2
3

1 ‖∇n
1+α
2 ‖22,

(23)
1

2

d

dt
‖ω‖22 + ‖∇ω‖22 ≤ ǫ4‖∇ω‖

2
2 + C(ǫ4)‖n0‖

2
3

1 ‖∇n
1+α
2 ‖22,

d

dt

∫

R3

〈x〉ndx =

∫

R3

nu · ∇〈x〉dx+

∫

R3

∆(n+ ̺)1+α〈x〉dx+

∫

R3

∇〈x〉 · nχ(c)∇c

(24)

≤ C + C(ǫ5)‖u‖
2
2 + ǫ5‖∇n

1+α
2 ‖22 + ‖∇c‖22,

(25)

∫

R3

n| logn|dx ≤

∫

R3

n logndx+ 2

∫

R3

〈x〉ndx + C.

Therefore, if ‖n0‖L1 is sufficiently small, then by adding (21), (22), (23) and
(24), with sufficient choices of small ǫ1, . . . , ǫ5 > 0, the estimate (8) is obtained
and so is the energy inequality (9). This completes the proof of the case (i).

Next we give the proof of the case (ii). Testing nα to (5)1 and integrating
it by parts, we note that

1

1 + α

d

dt
‖n‖1+α

1+α +

∫

R3

∇nα · ∇(n+ ̺)1+αdx =

∫

R3

∇n1+α · (χ(c)∇c) dx.

Since ∇nα · ∇n = (4α/(1 + α)2)|∇n(1+α)/2|2 ≥ 0, we have
∫

R3

∇nα · ∇(n+ ̺)1+αdx =

∫

R3

∇nα · (1 + α)(n + ̺)α∇n dx

≥

∫

R3

∇nα · (1 + α)nα∇n dx

=
4α(1 + α)

1 + 2α

∥

∥

∥
∇n

1+2α
2

∥

∥

∥

2

2
.

Thus via Young’s inequality and the boundedness of c, we have

(26)

1

1 + α

d

dt
‖n‖1+α

1+α +
4α(1 + α)

1 + 2α
‖∇n

1+2α
2 ‖22

≤

∫

R3

∇n1+α · χ(c)∇cdx

≤ ǫ1‖∇n
1+2α

2 ‖22 + C(ǫ1)‖n
1
2∇c‖22,
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where ǫ1 is a small number to be specified later. Let M(ǫ1) be a positive
constant satisfying that M(ǫ1)χ0 > C(ǫ1). It follows by multiplying (5)1 with
M(ǫ1)(1 + logn) and using the integration by parts that

d

dt
M(ǫ1)

∫

R3

n logndx+
4M(ǫ1)

1 + α
‖∇n

1+α
2 ‖22

< M(ǫ1)

∫

R3

∇n · (χ(c)∇c) dx

= −M(ǫ1)

∫

R3

nχ′(c) |∇c|
2
dx−M(ǫ1)

∫

R3

nχ(c)∆c dx.

We then obtain via Young’s inequality that

(27)

d

dt
M(ǫ1)

∫

R3

n logn dx+
4M(ǫ1)

1 + α
‖∇n

1+α
2 ‖22 +M(ǫ1)χ0‖n

1
2∇c‖22

< M(ǫ1) sup(|χ(c)|)
(

ǫ2‖∆c‖
2
2 + C(ǫ2)‖n‖

2
2

)

for small ǫ2 to be specified later. On the other hand, since α > 1/6, it follows
that 3/(1 + 3α) < 2 and so we have for any small ǫ > 0,

(28)

‖n‖22 ≤ C‖n‖
1+6α
2+6α

1 ‖n‖
3+6α
2+6α

3+6α

≤ C‖n0‖
1+6α
2+6α

1 ‖∇n
1+2α

2 ‖
3

1+3α

2

≤ ‖n0‖
1+6α
2+6α

1

(

C(ǫ3) + ǫ3‖∇n
1+2α

2 ‖22

)

for small ǫ3, which will be specified with respect to ǫ1 and ǫ2 later. Combining
(27) and (28), we note that

(29)

d

dt
M(ǫ1)

∫

R3

n logndx+
4M(ǫ1)

1 + α
‖∇n

1+α
2 ‖22 +Mǫ1χ0‖n

1
2∇c‖22

< C + ǫ2M(ǫ1)‖∆c‖
2
2 + C(ǫ1, ǫ2)ǫ3‖∇n

1+2α
2 ‖22.

Similarly as in (14), we can see that

(30)
d

dt
‖∇c‖22+‖∆c‖22 ≤ C(ǫ5, ǫ6)+C(ǫ4)‖ω‖

2
2+(ǫ4+ǫ5)‖∆c‖

2
2+ǫ6‖∇n

1+α
2 ‖22

for small ǫ4, ǫ5 and ǫ6 to be specified later. As similarly in (16), (18) and (19),
with the aid of (28) it follows that

(31)
1

2

d

dt
‖ω‖22 + ‖∇ω‖22 ≤ C(ǫ7, ǫ8) + ǫ7‖∇ω‖

2
2 + ǫ8‖∇n

1+2α
2 ‖22,

d

dt

∫

R3

〈x〉ndx =

∫

R3

nu · ∇〈x〉dx+

∫

R3

∆(n+ ̺)1+α〈x〉dx+

∫

R3

∇〈x〉 · nχ(c)∇c

≤ C
(

1 + ‖u‖22 + ‖∇c‖22
)

+
(

C(ǫ9) + ǫ9‖∇n
1+2α

2 ‖22

)

,(32)

(33)

∫

R3

n| logn|dx ≤

∫

R3

n logndx+ 2

∫

R3

〈x〉ndx + C
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for small ǫ7, ǫ8 and ǫ9 to be specified later. Summing up all estimates with
sufficient choices of ǫ1, . . . , ǫ9 > 0, we obtain the estimate (8) and the energy
inequality (9). When ‖n0‖L1 is sufficiently small, the limiting case α = 1/6
can be included. Since its verification is similar as in the case (i), the details
are omitted.

Next we consider the case (iii). Reminding α < 1 and testing (1 + logn) to
(5)1, we obtain

d

dt

∫

R3

n logndx+
4

1 + α
‖∇n

1+α
2 ‖22

≤

∫

R3

∇n · (χ(c)∇c) dx

≤ sup |χ(c)|

∫

R3

n
1−α
2 |∇n

1+α
2 ||∇c|dx

≤ C

∫

R3

(

C(ǫ1) + ǫ1n
1
2

)

|∇n
1+α
2 ||∇c|dx

for small ǫ1 to be specified later. Therefore we note that

(34)

d

dt

∫

R3

n logndx+
4

1 + α
‖∇n

1+α
2 ‖22

≤ ǫ2C(ǫ1)‖∇n
1+α
2 ‖22 + C(ǫ1, ǫ2)‖∇c‖

2
2 + Cǫ1

(

‖∇n
1+α
2 ‖22 + ‖n

1
2∇c‖22

)

for small number ǫ2 depending on ǫ1. Integrating it by parts after multiplying
(5)1 with nα and applying the same procedures as in (26), we obtain that

(35)

1

1 + α

d

dt
‖n‖1+α

1+α +
4α(1 + α)

1 + 2α
‖∇n

1+2α
2 ‖22

≤ ǫ3‖∇n
1+2α

2 ‖22 + C(ǫ3)‖n
1
2∇c‖22

for small ǫ3 to be specified later. Multiplying (5)2 with −∆c and integrating it
by parts gives

1

2

d

dt
‖∇c‖22+‖∆c‖22 = −

∫

R3

∇c ·∇(u ·∇c)dx−

∫

R3

∇c ·∇(nκ(c))dx = (I)+(II).

With the aid of div u = 0, the first term (I) is estimated as follows:

(I) = −

∫

R3

∑

i,j

∂ic ∂jc ∂iujdx ≤ C(ǫ4)‖ω‖
2
2 + ǫ4‖∆c‖

2
2

for small ǫ4 to be specified later. On the other hand, for the second term (II)
we compute

(II) ≤ −

∫

R3

κ′(c)n|∇c|2dx+

∫

R3

κ(c)|∇c||∇n|dx = −(II1) + (II2).

Keeping in mind that α < 1 and continuing to compute (II2), we obtain

(II2) =

∫

R3

κ(c)
2

1 + α
n

1−α
2 |∇n

1+α
2 ||∇c|dx
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≤ sup |κ(c)|

∫

R3

(

C(ǫ5) + ǫ5n
1
2

)

|∇n
1+α
2 ||∇c|dx

≤ C(ǫ5)ǫ6‖∇n
1+α
2 ‖22 + C(ǫ5, ǫ6)‖∇c‖

2
2 + Cǫ5

(

‖∇n
1+α
2 ‖22 + ‖n

1
2∇c‖22

)

for small ǫ6 depending on ǫ5. Summing up above estimates, we observe that

(36)

1

2

d

dt
‖∇c‖22 + ‖∆c‖22 + κ0‖n

1
2∇c‖22

≤ C(ǫ4)‖ω‖
2
2 + ǫ4‖∆c‖

2
2 + C(ǫ5)‖∇c‖

2
2

+ C(ǫ5) · (ǫ5 + ǫ6)‖∇n
1+α
2 ‖22 + C · ǫ5‖n

1
2∇c‖22.

As in previous case, choosing sufficient small ǫ1, . . . , ǫ6, we can derive the esti-
mates (31), (32) and (33) and since computations are the same as before, we
skip the details. Adding up all estimates leads to energy inequality and thus
proof is completed. For the limiting case α = 1/6 with sufficiently small ‖n0‖L1 ,
we also skip its details, because its verification is rather straightforward.

The case (iv) is a direct consequence of the cases (i) and (iii) and therefore,
we completes the proof. �

2.2. Uniform estimates for bounded weak solutions

In this subsection, we provide some uniform estimates of solutions to the
system (5) under the hypothesis (A) and the Assumption 1.3. The estimate is
used in Section 3 to construct the bounded weak solution of the equation (1).
To be more precise, our result is read as follows:

Lemma 2.2. Let d = 3, τ = 0 and T > 0 be given. Suppose that (n, c, u) is a

classical solution for the system (5)̺, ̺ ∈ (0, 1) with the smooth initial datum

(n0̺, c0̺, u0̺) satisfies the initial condition (3) and (4). Assume further that

κ satisfies the hypothesis (A) and the Assumption 1.3 holds. Then, for any

0 < t ≤ T

(37) n ∈ L∞(0, T ;Lp(Rd)), 1 ≤ p ≤ ∞,

(38) ∇n
p+α

2 ∈ L2(0, T ;L2(Rd)), 2 ≤ p <∞,

(39) c, u ∈ L∞(0, T ;W 1,q(Rd)) ∩ Lq(0, T ;W 2,q(Rd)), 2 ≤ q <∞,

(40) ct, ut ∈ Lq(0, T ;Lq(Rd)), 2 ≤ q <∞.

Proof. We first show that for each p > 1, there exists constant C(p, T ) such

that ‖n(t)‖p ≤ C(p, T ) for all t ∈ (0, T ). We recall
∫ T

0
‖∇n

1+α
2 ‖22 < ∞ from

Lemma 2.1. Multiplying (5)1 with np−1 (p > 1+α) and integrating it by parts
implies that

1

p

d

dt
‖n‖pp +

∫

R3

∇np−1 · ∇(n+ ̺)pdx =
p− 1

p

∫

R3

∇np · (χ(c)∇c) dx.
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Since ∇np−1 · ∇n = (4(p− 1)/p2)|∇np/2|2 ≥ 0, we have
∫

R3

∇np−1 · ∇(n+ ̺)1+αdx =

∫

R3

∇np−1 · (1 + α)(n + ̺)α∇n dx

≥

∫

R3

∇np−1 · (1 + α)nα∇n dx

=
4(p− 1)(1 + α)

(p+ α)2

∥

∥

∥
∇n

p+α

2

∥

∥

∥

2

2
.

Thus we have

(41)

1

p

d

dt
‖n‖pp +

4(p− 1)(1 + α)

(p+ α)2
‖∇n

p+α

2 ‖22

≤

∫

R3

∇np · χ(c)∇cdx

= −

∫

R3

npχ′(c) |∇c|
2
dx−

∫

R3

npχ(c)∆c dx ≤ χ

∫

R3

np|∆c|dx,

where χ := sup |χ(c)|. Here we used that −
∫

R3 n
pχ′(c) |∇c|

2
dx in (41) is non-

positive. We take r0 > 3 and put ℓ = 2r∗0/(3 − r∗0), where r
∗
0 ∈ (1, 32 ) is the

Hölder conjugate of r0. Later, r0 will be taken as 3(1 + 2α) or 3(1 + α). We
note that 1 < ℓ < 2. Via Sobolev imbedding inequality, we have

(42)

∫

R3

np|∆c|dx ≤ ‖∆c‖r0‖n‖
p
pr∗

0
≤ ‖∆c‖r0

[

‖n‖
1
ℓ
p ‖n‖

ℓ−1

ℓ

3p

]p

≤
[

‖∆c‖ℓr0‖n‖
p
p

]

1
ℓ ·

[

‖∇n
p

2 ‖22

]

ℓ−1

ℓ

.

We note that for 0 < r < s < t <∞ and for any f with f r, f s ∈ H1

‖∇f s‖2 ≤
s

rθt1−θ
‖∇f r‖θ2‖∇f

t‖1−θ
2 ,

where θ ∈ (0, 1) satisfies s = rθ + t(1 − θ). Applying the above interpolation
inequality, we obtain

(43) ‖∇n
p

2 ‖22 ≤ Cp

(

‖∇n
1+α
2 ‖22 + ‖∇n

p+α

2 ‖22

)

,

where

(44) Cp =
p

4

(

1 + α

2

)− α
p−1

(

p+ α

2

)−1+ α
p−1

.

It is easy to see that {Cp : p > 0} is bounded. It follows from (41)∼(44) and
Young’s inequality that

∫

Rn

np|∆c|dx ≤Mp‖∆c‖
ℓ
r0‖n‖

p
p +

1

χ
·

pα

(p+ α)2

[

‖∇n
1+α
2 ‖22 + ‖∇n

p+α

2 ‖22

]

,

where

Mp =
1

ℓ

[

pα

(p+ α)2
·
ℓ− 1

ℓ
·
1

Cp
·
1

χ

]1−ℓ

≤

[

χ · Cp
(p+ α)2

pα

]ℓ−1

.
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Thus we have

d

dt
‖n‖pp ≤ χpMp‖∆c‖

ℓ
r0‖n‖

p
p + p‖∇n

1+α
2 ‖22,

which implies

‖n‖pp ≤
[

‖n0‖
p
p + Cp

]

exp

(

χpMp

∫ t

0

‖∆c(τ)‖ℓr0dτ

)

where C =
∫ T

0

∥

∥

∥
∇n

1+α
2

∥

∥

∥
. Hence we obtain

‖n‖p ≤ C1 exp

(

C2Mp

∫ t

0

‖∆c(τ)‖ℓr0dτ

)

+ C3

for some positive constants C1, C2 and C3 > 0. Suppose the assumption (ii),
(iii) or (iv) holds. For each case, it follows from Lemma 2.1 that

(45)

∫ T

0

‖∇n
1+α
2 ‖22 +

∫ T

0

‖∇n
1+2α

2 ‖22 <∞.

We put r0 = 3(1+2α) and we then note that ℓ = 2r∗0/(3− r∗0) = (2+4α)/(1+
4α). It remains to show

(46)

∫ t

0

‖∆c(τ)‖ℓr0dτ <∞, t ∈ [0, T ].

We first consider the case 1/4 ≤ α < 1/2. Since

4

1 + 4α
≤ 2, r0 < 6 and u ∈ L∞(0, T ;L6(R3)),

we obtain via mixed norm estimate of heat equation

(47)

∫ T

0

‖∇2c‖ℓr0 ≤M1

∫ T

0

(

‖n‖ℓr0 + ‖u · ∇c‖ℓr0
)

≤M1

∫ T

0

‖n
1+2α

2 ‖
4

1+4α

6 +M2

∫ T

0

‖u‖ℓ6‖∇c‖
ℓ
6r0

6−r0

≤M3

∫ T

0

‖∇n
1+2α

2 ‖
4

1+4α

2 +M4

∫ T

0

‖∆c‖ℓ6r0
6+r0

:=M3(I) +M4(II).

We set δ = 4/(1 + 4α). It follows from Young’s inequality that there exists
Cδ ≥ 0 (Cδ = 0 if and only if δ = 2) such that

(I) ≤

∫ T

0

Cδ + ‖∇n
1+2α

2 ‖22dt <∞.

On the other hand, again by the mixed norm estimate of heat equation, we
have

(II) ≤M5

∫ T

0

‖n‖ℓ6r0
6+r0

+M6

∫ T

0

‖∇c‖ℓr0 .
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Due to (8) and (9), we note that

∇c ∈ Lℓ(0, T ;L2(R3)) ∩ Lℓ(0, T ;L6(R3)),

n ∈ Lℓ(0, T ;L1(R)) ∩ Lℓ(0, T ;Lr0(R3)).

Therefore, we have (II) <∞. Therefore (46) holds, which completes the proof
for the case 1/4 ≤ α < 1/2.

For the case α ≥ 1/2, we note that, from (45), we have

(48) n ∈ L1+2α(0, T ;Lr0(R3)) ⊂ L2(0, T ;Lr0(R3)).

Considering the vorticity equations ωt −∆ω = −∇× (n∇φ), we can obtain Lp

estimate for ω. To be more precise,

1

r0

d

dt
‖ω‖r0r0 +

∥

∥

∥
|ω|

r0−2

2 ∇ω
∥

∥

∥

2

2
≤ C1

∫

R3

n |ω|
r0−2

|∇ω|

≤ C2‖n‖r0‖ω‖
r0−2

2
r0

∥

∥

∥
|ω|

r0−2

2 ∇ω
∥

∥

∥

2

≤ Cǫ‖n‖
2
r0‖ω‖

r0−2
r0 + ǫ

∥

∥

∥
|ω|

r0−2

2 ∇ω
∥

∥

∥

2

2
.

Thus we have

‖ω‖r0−1
r0

d

dt
‖ω‖r0 ≤ Cǫ‖n‖

2
r0‖ω‖

r0−2
r0 ,

which implies
d

dt
‖ω‖2r0 ≤ Cǫ‖n‖

2
r0.

Thus it follows from (48) that

(49) u ∈ L∞(0, T ;L∞(R3)).

Hence, together with (49), we notice that
∫ T

0

‖∆c‖ℓr0 ≤M1

∫ T

0

(

‖n‖ℓr0 + ‖u · ∇c‖ℓr0
)

≤M2

∫ T

0

‖∇n
1+2α

2 ‖22 +M3

∫ T

0

‖u‖ℓ∞‖∇c‖ℓr0 <∞.

Thus (46) is verified, which completes the proof for the case α ≥ 1/2.
Now, it remains to estimate for the case (i). We recall again due to result

of Lemma 2.1 that
∫ T

0
‖∇n

1+α
2 ‖22 < ∞. We put r0 = 3(1 + α) and ℓ = (2 +

2α)/(1 + 2α). Following similar procedures for proof of the previous case, we
need to show only

(50)

∫ t

0

‖∆c(τ)‖ℓr0dτ <∞, t ∈ [0, T ].

Since α ≥ 1/2 and
∫ T

0
‖∇n

1+α
2 ‖22 <∞, we have

(51) n ∈ L1+α(0, T ;Lr0(R3)) ⊂ L2(0, T ;Lr0(R3)).
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As proved earlier, Lp estimate of vorticity ω leads that

(52) u ∈ L∞(0, T ;L∞(R3)).

Noting that 4/(1 + 2α) ≤ 2 and using (52), we obtain
∫ T

0

‖∆c‖ℓr0 ≤M1

∫ T

0

(

‖n‖ℓr0 + ‖u · ∇c‖ℓr0
)

≤M2

∫ T

0

‖∇n
1+2α

2 ‖
4

1+2α

2 +M3

∫ T

0

‖u‖ℓ∞‖∇c‖ℓr0 <∞.

This deduce the boundness of Lp-norm of n, for each p > 1. Now adapting the
well known Moser-Alikakos iteration procedure, (see, for example, [13], Lemma
4.1) we finally conclude the boundedness of L∞-norm of n. Regularity of c
and u, i.e., (39) and (40), is direct consequence of mixed norm estimate of heat
equation and Stokes system. This completes the proof. �

2.3. Two dimensional case

To prove Theorem 1.8, we need to derive a uniform estimate of the solution
of the equation (1) in the two dimensional case. In this case, as mentioned
earlier, the Navier-Stokes equations are considered and we obtain the following
estimate.

Lemma 2.3. Let d = 2, τ = 1 and T > 0 be given. Suppose that (n, c, u) is a

classical solution for the system (5)̺, ̺ ∈ (0, 1) and the smooth initial datum

(n0̺, c0̺, u0̺) satisfies the initial condition (3) and (4). Assume further that κ
satisfies the hypothesis (A) and one of the following conditions holds:

(i) χ satisfies (B1) and α > 0.
(ii) κ satisfies (B3) and 0 < α < 1.

Then E(t) and D(t) defined in (6)-(7) satisfy

(53)
d

dt
E(t) +D(t) ≤ CE(t).

Moreover, it satisfies the following energy inequality
∫

R3

(

n(|logn|+ 2〈x〉) +
|∇c|2

2
+

|ω|2

2

)

dx

(54) +

∫ T

0

‖∇ω‖2L2 + ‖∇n
1+α
2 ‖2L2 + ‖∆c‖2L2dt ≤ C

with C = C(T , ‖c0̺‖L∞, ‖〈x〉n0̺‖L1 , ‖∇c0̺‖L2, ‖n0̺| lnn0̺|‖L1 , ‖∇φ‖L∞,

‖φ‖L∞). Moreover, for any 0 < t ≤ T

(55) n ∈ L∞(0, T ;Lp(Rd)), 1 ≤ p ≤ ∞,

(56) ∇n
p+α

2 ∈ L2(0, T ;L2(Rd)), 2 ≤ p <∞,

(57) c, u ∈ L∞(0, T ;W 1,q(Rd)) ∩ Lq(0, T ;W 2,q(Rd)), 2 ≤ q <∞,
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(58) ct, ut ∈ Lq(0, T ;Lq(Rd)), 2 ≤ q <∞.

Moreover, if the initial mass ‖n0̺‖L1(Rd) is sufficiently small, then the limiting

case α = 0 can be included in the above hypothesis (i) and (ii).

Proof. In the case of two dimensions, almost all the procedures are similar
to those that were used to prove the cases (B1) or (B3) shown in the proof
of Lemma 2.1. Therefore, we just present main stream of proof and specify
some distinct points compared to three dimensional case, instead giving all the
details. In addition, we consider the only the case (i), since the other case (ii)
can be argued similarly.

Multiplying (5)1 with logn and following the same procedure as before, we
lead to the estimate (10). Here we recall so called Ladyzhenskaya inequality in
R

2 (see [8]):

(59) ‖f‖24 ≤ C‖f‖2‖∇f
m‖

1
m

2 , 1 ≤ m <∞.

With the aid of (59), we derive the following inequality in place of (11): instead
of using the interpolation inequality which have been used to derive (11), to
obtain the following alternative inequality

‖n‖22 = ‖n
1
2 ‖24 ≤ C‖n

1
2 ‖22‖∇n

1+α
2 ‖1−δ

2 , δ =
α− 1

α+ 1
.

Therefore, there exist sufficiently small ǫ1 > 0 and ǫ2 > 0 such that

(60)
d

dt

∫

R3

n logndx+
4

1 + α
‖∇n

1+α
2 ‖22 < Cǫ1,ǫ2 + ǫ1‖∆c‖

2
2 + ǫ2‖∇n

1+α
2 ‖22.

The estimates (14), (15), (18) and (19) are derived in the same manners as three
dimensional case, and thus we omit the details. Summing up the estimates,
we obtain (53) and (54). Multiplying (5)1 with np−1 (1 + α < p < ∞) and
using integration by parts, we arrive at the estimate (41). We then estimate
the righthand side as follows (compare to (42)):

∫

R2

np|∆c|dx ≤ ‖∆c‖2‖n‖
p
2p ≤ C‖∆c‖2‖n

p

2 ‖2‖∇n
p

2 ‖2

≤ Cǫ

(

‖∆c‖22‖n‖
p
p

)

+ ǫ‖∇n
p
2 ‖22,

where the inequality (59) is used. Via the fact that
∫ T

0
‖∇n

1+α
2 ‖22 < ∞ and

similar procedure as in the proof of Lemma 2.2 with ℓ = r0 = 2, we finally have

1

p

d

dt
‖n‖pp < C1‖∆c‖

2
2‖n‖

p
p + C2‖∇n

1+α
2 ‖22

for some C1, C2 > 0, independent of p. Since regularity of (n, c, u) can be
shown as the case of three dimensions, we omit the details. This completes the
proof. �
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3. Proofs of main theorems

In this section, we present proofs of our main results - Theorem 1.5, Theorem
1.7 and Theorem 1.8. Construction of weak and bounded weak solutions is
based on the uniform estimates established in the previous section. Since the
argument is rather standard, we just give the sketch of how our construction
goes, instead presenting all the details.

Proofs of Theorem 1.5, Theorem 1.7 and Theorem 1.8. First, we recall the
regularized system (5) with the initial data (n0̺, c0,̺, u0̺) which are chosen as
smooth approximations of (n0, c0, u0):

n0̺ = ψ̺ ∗ n0, c0̺ = ψ̺ ∗ c0 and u0̺ = ψ̺ ∗ u0

where φ̺ denotes the usual mollifier. The convergence of (n0̺, c0̺, u0̺) entails
that the estimates obtained in Lemma 2.1, Lemma 2.2 and Lemma 2.3 are
uniform, independent of ̺, precisely, the constant C in (9) and (54) can be
chosen independent of ̺. Likewise, there exists a constant C such that for
2 ≤ q <∞

(61) ‖n̺‖L∞((0,T )×Ω) +
∥

∥

∥
∇n

q+α

2
̺

∥

∥

∥

L2((0,T )×Ω)
< C,

(62) ‖c̺‖L∞(0,T ;W 1,q(Rd)) + ‖c̺‖Lq(0,T ;W 2,q(Rd)) + ‖∂tc̺‖Lq(0,T ;Lq(Rd)) < C,

(63) ‖u̺‖L∞(0,T ;W 1,q(Rd)) + ‖u̺‖Lq(0,T ;W 2,q(Rd)) + ‖∂tu̺‖Lq(0,T ;Lq(Rd)) < C.

According to the estimates we have derived, a bootstrap argument can extend
the local solution to any given time interval (0, T ) (see e.g. [4] and [13], or
alternatively, [12] for more detail). Let k be any number with k ≥ 2 + α. We
then show that ∂tn̺ and ∂tn

k
̺ are, independent of ̺, in L1(0, T ;W−2,2(Rd)),

where W−2,2(Rd) is the dual space of W 2,2(Rd) (compare to [13]). Then via
Aubin-Lions Lemma, by passing to the limit, we have some weak limit (n, c, u),
which turns out to be a weak solution. Its verification is rather straightfor-
ward, and thus the details are skipped. It is also direct that (n, c, u) is a
bounded weak solution and satisfies the estimates (61)-(63). This completes the
proof.
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