참고문헌
- J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. (2) 17 (1915), no. 1, 12-22. https://doi.org/10.2307/2007212
- R. M. Ali, V. Ravichandran, and N. K. Jain, Convolution of certain analytic functions, J. Anal. 18 (2010), 1-8.
- Y. Avci and E. Z lotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 44 (1990), 1-7.
- D. M. Campbell and V. Singh, Valence properties of the solution of a differential equa-tion, Pacific J. Math. 84 (1979), no. 1, 29-33. https://doi.org/10.2140/pjm.1979.84.29
- P. N. Chichra, New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc. 62 (1976), no. 1, 37-43.
- M. Chuaqui, P. Duren, and B. Osgood, Curvature properties of planar harmonic map-pings, Comput. Methods Funct. Theory 4 (2004), no. 1, 127-142. https://doi.org/10.1007/BF03321060
- J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25. https://doi.org/10.5186/aasfm.1984.0905
- M. Dorff, Convolutions of planar harmonic convex mappings, Complex Variables Theory Appl. 45 (2001), no. 3, 263-271. https://doi.org/10.1080/17476930108815381
- M. Dorff, M. Nowak, and M.Wo loszkiewicz, Convolutions of harmonic convex mappings, Complex Var. Elliptic Equ. 57 (2012), no. 5, 489-503. https://doi.org/10.1080/17476933.2010.487211
- P. Duren, Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, 156, Cambridge Univ. Press, Cambridge, 2004.
- C. Y. Gao, On the starlikeness of the Alexander integral operator, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 10, 330-333. https://doi.org/10.3792/pjaa.68.330
- M. R. Goodloe, Hadamard products of convex harmonic mappings, Complex Var. Theory Appl. 47 (2002), no. 2, 81-92. https://doi.org/10.1080/02781070290010841
- A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601.
- A. W. Goodman, Univalent Functions. Vol. I and II, Mariner, Tampa, FL, 1983.
- R. Hernandez and M. J. Martin, Stable geometric properties of analytic and harmonic functions, Math. Proc. Cambridge Philos. Soc. 155 (2013), 343-359. https://doi.org/10.1017/S0305004113000340
- J. Krzyz, The radius of close-to-convexivity within the family of univalent functions, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 10 (1962), 201-204.
- J. Krzyz and Z. Lewandowski, On the integral of univalent functions, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 11 (1963), 447-448.
- R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.
- T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532-537. https://doi.org/10.1090/S0002-9947-1962-0140674-7
- T. H. MacGregor, A class of univalent functions, Proc. Amer. Math. Soc. 15 (1964), 311-317.
- E. P. Merkes and D. J. Wright, On the univalence of a certain integral, Proc. Amer. Math. Soc. 27 (1971), 97-100. https://doi.org/10.1090/S0002-9939-1971-0269825-1
- S. S. Miller and P. T. Mocanu, Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000.
-
P. T. Mocanu, Sufficient conditions of univalency for complex functions in the class
$C^1$ , Anal. Numer. Theor. Approx. 10 (1981), no. 1, 75-79. - P. T. Mocanu, On starlikeness of Libera transform, Mathematica (Cluj) 28(51) (1986), no. 2, 153-155.
- P. T. Mocanu, Injectivity conditions in the complex plane, Complex Anal. Oper. Theory 5 (2011), no. 3, 759-766. https://doi.org/10.1007/s11785-010-0052-y
- S. Nagpal and V. Ravichandran, A subclass of close-to-convex harmonic mappings, Complex Var. Elliptic Equ. 59 (2014), no. 2, 204-216. https://doi.org/10.1080/17476933.2012.727409
- S. Nagpal and V. Ravichandran, Fully starlike and fully convex harmonic mappings of order, Ann. Polon. Math. 108 (2013), no. 1, 85-107. https://doi.org/10.4064/ap108-1-7
- S. Nagpal and V. Ravichandran, Univalence and convexity in one direction of the convolution of harmonic map- pings, Complex Var. Elliptic Equ. (2013), DOI:10.1080/17476933.2013.836188.
- S. Ponnusamy and A. Sairam Kaliraj, On harmonic close-to-convex functions, Comput. Methods Funct. Theory 12 (2012), no. 2, 669-685. https://doi.org/10.1007/BF03321849
- S. Ponnusamy, H. Yamamoto, and H. Yanagihara, Variability regions for certain families of harmonic univalent mappings, Complex Var. Elliptic Equ. 58 (2013), no. 1, 23-34. https://doi.org/10.1080/17476933.2010.551200
- J. S. Ratti, The radius of convexity of certain analytic functions, Indian J. Pure Appl. Math. 1 (1970), no. 1, 30-36.
- S. Ruscheweyh, Convolutions in Geometric Function Theory, Seminaire de Mathematiques Superieures, 83, Presses Univ. Montreal, Montreal, QC, 1982.
- S. Ruscheweyh and L. C. Salinas, On the preservation of direction-convexity and the Goodman-Saff conjecture, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 1, 63-73. https://doi.org/10.5186/aasfm.1989.1427
- H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116. https://doi.org/10.1090/S0002-9939-1975-0369678-0
- H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220 (1998), no. 1, 283-289. https://doi.org/10.1006/jmaa.1997.5882
- R. Singh and S. Singh, Starlikeness and convexity of certain integrals, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 35 (1981), 145-148 (1984).
- R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc. 106 (1989), no. 1, 145-152. https://doi.org/10.1090/S0002-9939-1989-0994388-6
피인용 문헌
- Convex Combinations of Planar Harmonic Mappings Realized Through Convolutions with Half-Strip Mappings vol.40, pp.2, 2017, https://doi.org/10.1007/s40840-016-0336-0
- On a subclass of harmonic close-to-convex mappings vol.188, pp.2, 2019, https://doi.org/10.1007/s00605-017-1138-7