DOI QR코드

DOI QR Code

CONSTRUCTION OF SUBCLASSES OF UNIVALENT HARMONIC MAPPINGS

  • Nagpal, Sumit (Department of Mathematics University of Delhi) ;
  • Ravichandran, V. (Department of Mathematics University of Delhi)
  • 투고 : 2013.09.22
  • 발행 : 2014.05.01

초록

Complex-valued harmonic functions that are univalent and sense-preserving in the open unit disk are widely studied. A new methodology is employed to construct subclasses of univalent harmonic mappings from a given subfamily of univalent analytic functions. The notions of harmonic Alexander operator and harmonic Libera operator are introduced and their properties are investigated.

키워드

참고문헌

  1. J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. (2) 17 (1915), no. 1, 12-22. https://doi.org/10.2307/2007212
  2. R. M. Ali, V. Ravichandran, and N. K. Jain, Convolution of certain analytic functions, J. Anal. 18 (2010), 1-8.
  3. Y. Avci and E. Z lotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 44 (1990), 1-7.
  4. D. M. Campbell and V. Singh, Valence properties of the solution of a differential equa-tion, Pacific J. Math. 84 (1979), no. 1, 29-33. https://doi.org/10.2140/pjm.1979.84.29
  5. P. N. Chichra, New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc. 62 (1976), no. 1, 37-43.
  6. M. Chuaqui, P. Duren, and B. Osgood, Curvature properties of planar harmonic map-pings, Comput. Methods Funct. Theory 4 (2004), no. 1, 127-142. https://doi.org/10.1007/BF03321060
  7. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25. https://doi.org/10.5186/aasfm.1984.0905
  8. M. Dorff, Convolutions of planar harmonic convex mappings, Complex Variables Theory Appl. 45 (2001), no. 3, 263-271. https://doi.org/10.1080/17476930108815381
  9. M. Dorff, M. Nowak, and M.Wo loszkiewicz, Convolutions of harmonic convex mappings, Complex Var. Elliptic Equ. 57 (2012), no. 5, 489-503. https://doi.org/10.1080/17476933.2010.487211
  10. P. Duren, Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, 156, Cambridge Univ. Press, Cambridge, 2004.
  11. C. Y. Gao, On the starlikeness of the Alexander integral operator, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 10, 330-333. https://doi.org/10.3792/pjaa.68.330
  12. M. R. Goodloe, Hadamard products of convex harmonic mappings, Complex Var. Theory Appl. 47 (2002), no. 2, 81-92. https://doi.org/10.1080/02781070290010841
  13. A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601.
  14. A. W. Goodman, Univalent Functions. Vol. I and II, Mariner, Tampa, FL, 1983.
  15. R. Hernandez and M. J. Martin, Stable geometric properties of analytic and harmonic functions, Math. Proc. Cambridge Philos. Soc. 155 (2013), 343-359. https://doi.org/10.1017/S0305004113000340
  16. J. Krzyz, The radius of close-to-convexivity within the family of univalent functions, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 10 (1962), 201-204.
  17. J. Krzyz and Z. Lewandowski, On the integral of univalent functions, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 11 (1963), 447-448.
  18. R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.
  19. T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532-537. https://doi.org/10.1090/S0002-9947-1962-0140674-7
  20. T. H. MacGregor, A class of univalent functions, Proc. Amer. Math. Soc. 15 (1964), 311-317.
  21. E. P. Merkes and D. J. Wright, On the univalence of a certain integral, Proc. Amer. Math. Soc. 27 (1971), 97-100. https://doi.org/10.1090/S0002-9939-1971-0269825-1
  22. S. S. Miller and P. T. Mocanu, Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000.
  23. P. T. Mocanu, Sufficient conditions of univalency for complex functions in the class $C^1$, Anal. Numer. Theor. Approx. 10 (1981), no. 1, 75-79.
  24. P. T. Mocanu, On starlikeness of Libera transform, Mathematica (Cluj) 28(51) (1986), no. 2, 153-155.
  25. P. T. Mocanu, Injectivity conditions in the complex plane, Complex Anal. Oper. Theory 5 (2011), no. 3, 759-766. https://doi.org/10.1007/s11785-010-0052-y
  26. S. Nagpal and V. Ravichandran, A subclass of close-to-convex harmonic mappings, Complex Var. Elliptic Equ. 59 (2014), no. 2, 204-216. https://doi.org/10.1080/17476933.2012.727409
  27. S. Nagpal and V. Ravichandran, Fully starlike and fully convex harmonic mappings of order, Ann. Polon. Math. 108 (2013), no. 1, 85-107. https://doi.org/10.4064/ap108-1-7
  28. S. Nagpal and V. Ravichandran, Univalence and convexity in one direction of the convolution of harmonic map- pings, Complex Var. Elliptic Equ. (2013), DOI:10.1080/17476933.2013.836188.
  29. S. Ponnusamy and A. Sairam Kaliraj, On harmonic close-to-convex functions, Comput. Methods Funct. Theory 12 (2012), no. 2, 669-685. https://doi.org/10.1007/BF03321849
  30. S. Ponnusamy, H. Yamamoto, and H. Yanagihara, Variability regions for certain families of harmonic univalent mappings, Complex Var. Elliptic Equ. 58 (2013), no. 1, 23-34. https://doi.org/10.1080/17476933.2010.551200
  31. J. S. Ratti, The radius of convexity of certain analytic functions, Indian J. Pure Appl. Math. 1 (1970), no. 1, 30-36.
  32. S. Ruscheweyh, Convolutions in Geometric Function Theory, Seminaire de Mathematiques Superieures, 83, Presses Univ. Montreal, Montreal, QC, 1982.
  33. S. Ruscheweyh and L. C. Salinas, On the preservation of direction-convexity and the Goodman-Saff conjecture, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 1, 63-73. https://doi.org/10.5186/aasfm.1989.1427
  34. H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116. https://doi.org/10.1090/S0002-9939-1975-0369678-0
  35. H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220 (1998), no. 1, 283-289. https://doi.org/10.1006/jmaa.1997.5882
  36. R. Singh and S. Singh, Starlikeness and convexity of certain integrals, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 35 (1981), 145-148 (1984).
  37. R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc. 106 (1989), no. 1, 145-152. https://doi.org/10.1090/S0002-9939-1989-0994388-6

피인용 문헌

  1. Convex Combinations of Planar Harmonic Mappings Realized Through Convolutions with Half-Strip Mappings vol.40, pp.2, 2017, https://doi.org/10.1007/s40840-016-0336-0
  2. On a subclass of harmonic close-to-convex mappings vol.188, pp.2, 2019, https://doi.org/10.1007/s00605-017-1138-7