References
- E. Artin, Theory of braids, Ann. of Math.(2) 48 (1947), 101-126. https://doi.org/10.2307/1969218
- R. Ashraf and B. Berceanu, Recurrence relation for HOMFLY polynomial and rational specializations, arXiv:1003.1034v1[mathGT], 2010.
- R. Ashraf and B. Berceanu, Simple braids, arXiv:1003.6014v1[mathGT], 2010.
- S. Bigelow, Does the Jones polynomial detect the unknot?, arXiv:0012086vI, 2000.
- J. Birman, Braids, Links, and Mapping Class Groups, Ann. of Math. Stud., No. 82. Princeton University Press, 1974.
- J. Birman, On the Jones polynomial of closed 3-braids, Invent. Math. 81 (1985), 287-294. https://doi.org/10.1007/BF01389053
- O. T. Dasbach and S. Hougardy, Does the Jones polynomial detect unknottedness?, Experiment. Math. 6 (1997), no. 1, 51-56. https://doi.org/10.1080/10586458.1997.10504350
- S. Eliahou, L. Kauffman, and M. Thistlethwaite, Infinite families of links with trivial Jones polynomial, Topology 42 (2003), no. 1, 155-169. https://doi.org/10.1016/S0040-9383(02)00012-5
- F. A. Garside, The braid groups and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235-254. https://doi.org/10.1093/qmath/20.1.235
- V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103-111. https://doi.org/10.1090/S0273-0979-1985-15304-2
- V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335-388. https://doi.org/10.2307/1971403
- V. F. R. Jones, The Jones Polynomial, Discrete Math. 294 (2005), 275-277. https://doi.org/10.1016/j.disc.2004.10.024
- L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395-407. https://doi.org/10.1016/0040-9383(87)90009-7
- W. B. R. Lickorish, An Introduction to Knot Theory, Springer-Verlag New York, Inc., 1997.
- H. R. Morton and H. B. Short, Calculating the 2-variable polynomial for knots presented as closed braids, J. Algorithms 11 (1990), no. 1, 117-131. https://doi.org/10.1016/0196-6774(90)90033-B
- K. Murasugi, Jones polynomial and classical conjectures in knot theory, Topology 26 (1987), no. 2, 187-194. https://doi.org/10.1016/0040-9383(87)90058-9
- A. R. Nizami, Fibonacci modules and multiple Fibonacci sequences, ARS Combinatoria CXIII (2014), 151-159.
- A. Ocneanu, A polynomial invariant for knots: A combinatorial and algebraic approach, Preprint MSRI, Berkeley, 1984.
- A. Stoimenow, Coefficients and non-triviality of the Jones polynomial, arXiv:0606255vI, 2006.
- M. Takahashi, Explicit formulas for jones polynomials of closed 3-braids, Comment. Math. Univ. St. Paul 38 (1989), no. 2, 129-167.
- M. B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), no. 3, 297-309. https://doi.org/10.1016/0040-9383(87)90003-6
- P. Traczyk, 3-braids with proportional Jones polynomials, Kobe J. Math. 15 (1998), no. 2, 187-190.
- Y. Yokota, Twisting formulae of the Jones polynomials, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 3, 473-482. https://doi.org/10.1017/S0305004100070559
Cited by
- Unoriented knot polynomials of torus links as Fibonacci-type polynomials pp.1793-7183, 2018, https://doi.org/10.1142/S1793557119500530