DOI QR코드

DOI QR Code

Principal Milk Components in Buffalo, Holstein Cross, Indigenous Cattle and Red Chittagong Cattle from Bangladesh

  • Islam, M.A. (Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences) ;
  • Alam, M.K. (Bangladesh Livestock Research Institute) ;
  • Islam, M.N. (Department of Dairy Science, Bangladesh Agricultural University) ;
  • Khan, M.A.S. (Department of Dairy Science, Bangladesh Agricultural University) ;
  • Ekeberg, D. (Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences) ;
  • Rukke, E.O. (Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences) ;
  • Vegarud, G.E. (Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences)
  • Received : 2013.09.18
  • Accepted : 2014.02.02
  • Published : 2014.06.01

Abstract

The aim of the present study was to get a total physical and chemical characterization and comparison of the principal components in Bangladeshi buffalo (B), Holstein cross (HX), Indigenous cattle (IC) and Red Chittagong Cattle (RCC) milk. Protein and casein (CN) composition and type, casein micellar size (CMS), naturally occurring peptides, free amino acids, fat, milk fat globule size (MFGS), fatty acid composition, carbohydrates, total and individual minerals were analyzed. These components are related to technological and nutritional properties of milk. Consequently, they are important for the dairy industry and in the animal feeding and breeding strategies. Considerable variation in most of the principal components of milk were observed among the animals. The milk of RCC and IC contained higher protein, CN, ${\beta}$-CN, whey protein, lactose, total mineral and P. They were more or less similar in most of the all other components. The B milk was found higher in CN number, in the content of ${\alpha}_{s2}-$, ${\kappa}$-CN and ${\beta}$-lactalbumin, free amino acids, unsaturated fatty acids, Ca and Ca:P. The B milk was also lower in ${\beta}$-lactoglobulin content and had the largest CMS and MFGS. Proportion of CN to whey protein was lower in HX milk and this milk was found higher in ${\beta}$-lactoglobulin and naturally occuring peptides. Considering the results obtained including the ratio of ${\alpha}_{s1}-$, ${\alpha}_{s2}-$, ${\beta}$- and ${\kappa}$-CN, B and RCC milk showed best data both from nutritional and technological aspects.

Keywords

References

  1. Akhundov, D. 1959. Some data on Buffaloes milk. Dairy Sci. (Abstr.) 22:211.
  2. Addeo, F., J. C. Mercier, and B. Ribadeau-Dumas. 1977. The caseins of buffalo milk. J. Dairy Res. 44:455-468. https://doi.org/10.1017/S0022029900020422
  3. Ariota, B., G. Campanile, A. Potena, R. Napolano, B. Gasparrini, G. Neglia, and R. Di Palo. 2007. Ca and P in buffalo milk: curd yield and milk clotting parameters. Ital. J. Anim. Sci. 6:497-499.
  4. Barlowska, J., M. Szwajkowska, Z. Litwinczuk, and J. Krol. 2011. Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr. Rev. Food Sci. Food Saf. 10:291-302. https://doi.org/10.1111/j.1541-4337.2011.00163.x
  5. Bell, S. J., G. T. Grochoski, and A. J. Clarke. 2006. Health implications of milk containing $\beta$-casein with the $A^{2}$ genetic variant. Crit. Rev. Food Sci. Nutr. 46:93-100. https://doi.org/10.1080/10408390591001144
  6. Bobe, G., E. G. Hammond, A. E. Freeman, G. L. Lindberg, and D. C. Beitz. 2003. Texture of butter from cows with different milk fatty acid compositions. J. Dairy Sci. 86:3122-3127. https://doi.org/10.3168/jds.S0022-0302(03)73913-7
  7. Bonfatti, V., M. Gervaso, R. Rostellato, A. Coletta, and P. Carnier. 2013. Protein composition affects variation in coagulation properties of buffalo milk. J. Dairy Sci. 96:4182-4190. https://doi.org/10.3168/jds.2012-6333
  8. Clare, D. A. and H. E. Swaisgood. 2000. Bioactive milk peptides: a prospectus. J. Dairy Sci. 83:1187-1195. https://doi.org/10.3168/jds.S0022-0302(00)74983-6
  9. Devle, H., I. Vetti, C. F. Naess-Andresen, E. O. Rukke, G. E. Vegarud, and D. Ekeberg. 2012. A comparative study of fatty acid profiles in ruminant and non-ruminant milk. Eur. J. Lipid Sci. Technol. 114:1036-1043. https://doi.org/10.1002/ejlt.201100333
  10. Devold, T. G., R. Nordbo, T. Langsrud, C. Svenning, M. Jansen Brovold, E. S. Sorensen, B. Christensen, T. Adnoy, and G. E. Vegarud. 2011. Extreme frequencies of the ${\alpha}s1$-casein "null" variant in milk from Norwegian dairy goats-Implications for milk composition, micellar size and renneting properties. Dairy Sci. Technol. 91:39-51.
  11. Downs, M. L., J. L. Kabourek, J. L. Baumert, and S. L. Taylor. 2013. Milk protein allergy. In: Milk and Dairy Products in Human Nutrition: Production, Composition and Health (Ed. Y. W. Park and G. F.W. Haenlein). Wiley-Blackwell, John Wiley and Sons Ltd. West Sussex, UK. pp. 111-128.
  12. Drake, S. L., M. E. Carunchia Whetstine, M. A. Drake, P. Courtney, K. Fligner, J. Jenkins, and C. Pruitt. 2007. Sources of umami taste in Cheddar and Swiss cheeses. J. Food Sci. 72:S360-S366. https://doi.org/10.1111/j.1750-3841.2007.00402.x
  13. El-Agamy, E. 2007. The challenge of cow milk protein allergy. Small Rumin. Res. 68:64-72. https://doi.org/10.1016/j.smallrumres.2006.09.016
  14. Elliott, R. B., D. P. Harris, J. P. Hill, N. J. Bibby, and H. E. Wasmuth. 1999. Type I (insulin-dependent) diabetes mellitus and cow milk: casein variant consumption. Diabetologia 42:292-296. https://doi.org/10.1007/s001250051153
  15. Farrell Jr, H. M., R. Jimenez-Flores, G. T. Bleck, E. M. Brown, J. E. Butler, L. K. Creamer, C. L. Hicks, C. M. Hollar, K. F. Ng-Kwai-Hang, and H. E. Swaisgood. 2004. Nomenclature of the proteins of cows' milk-sixth revision. J. Dairy Sci. 87:1641-1674. https://doi.org/10.3168/jds.S0022-0302(04)73319-6
  16. Folch, J., M. Lees, and G. H. Sloane-Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497-509.
  17. Fox, P. F. 2009. Lactose: chemistry and properties. In: Advanced Dairy Chemistry. Vol. 3 lactose, water, salts and minor constituents, 3rd Ed. (Ed. P. L. H. McSweeney and P. F. Fox). Springer, NY, USA. pp. 1-15.
  18. Glantz, M., T. G. Devold, G. E. Vegarud, H. Lindmark Mansson, H. Stalhammar, and M. Paulsson. 2010. Importance of casein micelle size and milk composition for milk gelation. J. Dairy Sci. 93:1444-1451. https://doi.org/10.3168/jds.2009-2856
  19. Glantz, M., H. L. Mansson, H. Stalhammar, L. O. Barstrom, M. Frojelin, A. Knutsson, C. Teluk, and M. Paulsson. 2009. Effects of animal selection on milk composition and processability. J. Dairy Sci. 92:4589-4603. https://doi.org/10.3168/jds.2008-1506
  20. Glantz, M., H. L. Mansson, H. Stalhammar, and M. Paulsson. 2012. Effect of polymorphisms in the leptin, leptin receptor and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) genes and genetic polymorphism of milk proteins on bovine milk composition. J. Dairy Res. 79:110-118. https://doi.org/10.1017/S0022029911000859
  21. Hallen, E., A. Lunden, A. M. Tyriseva, M. Westerlind, and A. Andren. 2010. Composition of poorly and non-coagulating bovine milk and effect of calcium addition. J. Dairy Res. 77:398-403. https://doi.org/10.1017/S0022029910000671
  22. Hayes, M., C. Stanton, G. F. Fitzgerald, and R. P. Ross. 2007. Putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Part II: bioactive peptide functions. Biotechnol. J. 2:435-449. https://doi.org/10.1002/biot.200700045
  23. Heck, J. M. L., H. J. F. Van Valenberg, H. Bovenhuis, J. Dijkstra, and T. C. M. Van Hooijdonk. 2012. Characterization of milk fatty acids based on genetic and herd parameters. J. Dairy Res. 79:39-46. https://doi.org/10.1017/S0022029911000641
  24. Heck, J. M. L., H. J. F. Van Valenberg, J. Dijkstra, and A. C. M. Van Hooijdonk. 2009. Seasonal variation in the Dutch bovine raw milk composition. J. Dairy Sci. 92:4745-4755. https://doi.org/10.3168/jds.2009-2146
  25. Hossain, M. B. and S. R. Dev. 2013. Physiochemical characteristics of various raw milk samples in a selected dairy plant of Bangladesh. Int. J. Eng. Appl. Sci. 1:91-96.
  26. Islam, M. R., M. N. Hassan, M. S. R. Siddiki, M. A. S. Khan, and M. A. Islam. 2008. Determination of quality of milk from different genotype of dairy cows. Bangladesh J. Anim. Sci. 37:52-56.
  27. Jones, R. M. 2003. Particle size analysis by laser diffraction: ISO 13320, standard operating procedures, and Mie theory. Am. Lab. (USA) 35:44-47.
  28. Khan, M. A. S., M. N. Islam, and M. S. R. Siddiki. 2007. Physical and chemical composition of swamp and water buffalo milk: A comparative study. Ital. J. Anim. Sci. 6(Suppl. 2):1067-1070.
  29. Lara-Villoslada, F., M. Olivares, and J. Xaus. 2005. The balance between caseins and whey proteins in cow's milk determines its allergenicity. J. Dairy Sci. 88:1654-1660. https://doi.org/10.3168/jds.S0022-0302(05)72837-X
  30. Lindmark-Mansson, H., R. Fonden, and H. E. Pettersson. 2003. Composition of Swedish dairy milk. Int. Dairy J. 13:409-425. https://doi.org/10.1016/S0958-6946(03)00032-3
  31. Medhammar, E., R. Wijesinha‐Bettoni, B. Stadlmayr, E. Nilsson, U. R. Charrondiere, and B. Burlingame. 2012. Composition of milk from minor dairy animals and buffalo breeds: A biodiversity perspective. J. Sci. Food Agric. 92:445-474. https://doi.org/10.1002/jsfa.4690
  32. Meena, H. R., H. Ram, and T. Rasool. 2007. Milk constituents in non-descript buffaloes reared at high altitudes in the Kumaon hills of the central Himalayas. Buffalo Bull. 26:72-76.
  33. Meisel, H. 1998. Overview on milk protein-derived peptides. Int. Dairy J. 8:363-373. https://doi.org/10.1016/S0958-6946(98)00059-4
  34. Mestawet, T. A., A. Girma, T. Adnoy, T. G. Devold, and G. E. Vegarud. 2013. Newly identified mutations at the CSN1S1 gene in Ethiopian goats affect casein content and coagulation properties of their milk. J. Dairy Sci. 96:4857-4869. https://doi.org/10.3168/jds.2012-6467
  35. Menard, O., S. Ahmad, F. Rousseau, V. Briard-Bion, F. Gaucheron, and C. Lopez. 2010. Buffalo vs. cow milk fat globules: Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chem. 120:544-551. https://doi.org/10.1016/j.foodchem.2009.10.053
  36. Michalski, M. C., B. Camier, V. Briard, N. Leconte, J. Y. Gassi, H. Goudedranche, F. Michel, and J. Fauquant. 2004. The size of native milk fat globules affects physico-chemical and functional properties of Emmental cheese. Lait 84:343-358. https://doi.org/10.1051/lait:2004012
  37. Misra, S. S., A. Sharma, T. K. Bhattacharya, P. Kumar, and S. S. Roy. 2008. Association of breed and polymorphism of ${\alpha}_{s1}$- and ${\alpha}_{s2}$-casein genes with milk quality and daily milk and constituent yield traits of buffaloes (Bubalus bubalis). Buffalo Bull. 27:294-301.
  38. Narvhus, J. A., K. Osteraas, T. Mutukumira, and R. K. Abrahamsen. 1998. Production of fermented milk using a malty compound-producing strain of Lactococcus lactis subsp. lactis biovar. diacetylactis, isolated from Zimbabwean naturally fermented milk. Int. J. Food Microbiol. 41:73-80. https://doi.org/10.1016/S0168-1605(98)00036-1
  39. Patino, E. M., D. O. Pochon, E. L. Faisal, J. F. Cedres, F. I. Mendez, C. G. Stefani, and G. Crudeli. 2007. Influence of breed, year season and lactation stage on the buffalo milk mineral content. Ital. J. Anim. Sci. 6:1046-1049.
  40. Pretto, D., M. De Marchi, M. Penasa, and M. Cassandro. 2013. Effect of milk composition and coagulation traits on Grana Padano cheese yield under field conditions. J. Dairy Res. 80:1-5. https://doi.org/10.1017/S0022029912000453
  41. Qureshi, T. M., G. E. Vegarud, R. K. Abrahamsen, and S. Skeie. 2012. Characterization of the Norwegian autochthonous cheese Gamalost and its angiotensin I-converting enzyme (ACE) inhibitory activity during ripening. Dairy Sci. Technol. 92:613-625. https://doi.org/10.1007/s13594-012-0078-1
  42. Ruiz, J., T. Antequera, A. I. Andres, M. J. Petron, and E. Muriel. 2004. Improvement of a solid phase extraction method for analysis of lipid fractions in muscle foods. Anal. Chim. Acta. 520:201-205. https://doi.org/10.1016/j.aca.2004.04.059
  43. Schafberg, R., R. Schmidt, M. Thiele, and H. H. Swalve. 2007. Fat globule size distribution in milk of a German buffalo herd. Ital. J. Anim. Sci. 6:1080-1083.
  44. Schonfeldt, H. C., N. G. Hall, and L. E. Smit. 2012. The need for country specific composition data on milk. Food Res. Int. 47: 207-209. https://doi.org/10.1016/j.foodres.2011.05.018
  45. Silva, S. V. and F. X. Malcata. 2005. Caseins as source of bioactive peptides. Int. Dairy J. 15:1-15. https://doi.org/10.1016/j.idairyj.2004.04.009
  46. St-Gelais, D. and S. Hache. 2005. Effect of $\beta$-casein concentration in cheese milk on rennet coagulation properties, cheese composition and cheese ripening. Food Res. Int. 38:523-531. https://doi.org/10.1016/j.foodres.2004.11.006
  47. Timmen, H. and S. Patton. 1988. Milk fat globules: fatty acid composition, size and in vivo regulation of fat liquidity. Lipids 23:685-689. https://doi.org/10.1007/BF02535669
  48. Van Knegsel, A. T. M., H. van den Brand, H. J. Dijkstra, S. Tamminga, and B. Kemp. 2005. Effect of dietary energy source on energy balance, production, metabolic disorders and reproduction in lactating dairy cattle. Reprod. Nutr. Dev. 45:665-688. https://doi.org/10.1051/rnd:2005059
  49. Zicarelli, L. 2004. Buffalo milk: Its properties, dairy yield and Mozzarella production. Vet. Res. Commun. 28:127-135.

Cited by

  1. Ex vivo Digestion of Milk from Red Chittagong Cattle Focusing Proteolysis and Lipolysis vol.28, pp.4, 2015, https://doi.org/10.5713/ajas.14.0269
  2. Identification of Antihypertensive Peptides Derived from Low Molecular Weight Casein Hydrolysates Generated during Fermentation by Bifidobacterium longum KACC 91563 vol.35, pp.6, 2015, https://doi.org/10.5851/kosfa.2015.35.6.738
  3. Separation and quantification of milk casein from different buffalo breeds vol.83, pp.03, 2016, https://doi.org/10.1017/S0022029916000455
  4. Effect of Dairy Cow Crossbreeding on Selected Performance Traits and Quality of Milk in First Generation Crossbreds pp.00221147, 2017, https://doi.org/10.1111/1750-3841.13988
  5. Comparative milk metabolite profiling for exploring superiority of indigenous Indian cow milk over exotic and crossbred counterparts vol.55, pp.10, 2018, https://doi.org/10.1007/s13197-018-3360-2
  6. Milk Composition for Admixed Dairy Cattle in Tanzania vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00142
  7. 비피도박테리움 롱검의 기능성과 치즈 제조에 활용 vol.34, pp.2, 2016, https://doi.org/10.22424/jmsb.2016.34.2.75
  8. Red Chittagong Cattle: An Indigenous Breed to Help Tackle the Challenges of Modern Animal Production Systems vol.5, pp.None, 2021, https://doi.org/10.3389/fsufs.2021.688641
  9. Buffalo Milk as a Source of Probiotic Functional Products vol.9, pp.11, 2014, https://doi.org/10.3390/microorganisms9112303