DOI QR코드

DOI QR Code

ON MINUS TOTAL DOMINATION OF DIRECTED GRAPHS

  • Li, WenSheng (Department of Mathematics & Information Sciences Langfang Normal College) ;
  • Xing, Huaming (School of Sciences Tianjin University of Science & Technology) ;
  • Sohn, Moo Young (Department of Mathematics Changwon National University)
  • Received : 2013.08.29
  • Published : 2014.04.30

Abstract

A three-valued function f defined on the vertices of a digraph D = (V, A), $f:V{\rightarrow}\{-1,0,+1\}$ is a minus total dominating function(MTDF) if $f(N^-(v)){\geq}1$ for each vertex $v{\in}V$. The minus total domination number of a digraph D equals the minimum weight of an MTDF of D. In this paper, we discuss some properties of the minus total domination number and obtain a few lower bounds of the minus total domination number on a digraph D.

Keywords

References

  1. J. A. Bondy and V. S. R. Murty, Graph Theory with Application, Elsevier, Amsterdam, 1976.
  2. L. Harris and J. H. Hattingh, The algorithmic complexity of certain functional variations of total domination in graphs, Australas. J. Combin. 29 (2004), 143-156.
  3. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
  4. J. Huang and J. M. Xu, The total domination and total bondage numbers of extended de Bruijn and Kautz digraphs, Comput. Math. Appl. 53 (2007), no. 8, 1206-1213. https://doi.org/10.1016/j.camwa.2006.05.020
  5. L. Y. Kang, E. F. Shan, and L. Caccetta, Total minus domination in k-partite graphs, Discrete Math. 306 (2006), no. 15, 1771-1775. https://doi.org/10.1016/j.disc.2006.03.004
  6. C. M. Lee, Signed and minus total domination on subclasses of bipartite graphs, Ars Combin. 100 (2011), 129-149.
  7. E. F. Shan and T. C. E. Cheng, Remarks on the minus (signed) total domination in graphs, Discrete Math. 308 (2008), no. 15, 3373-3380. https://doi.org/10.1016/j.disc.2007.06.015
  8. S. M. Sheikholeslami, Signed total domination numbers of directed graphs, Util. Math. 85 (2011), 273-279.
  9. G. Szekeres and H. S. Wilf, An inequality for the chromatic number of a graph, J. Combinatorial Theory 4 (1968), 1-3. https://doi.org/10.1016/S0021-9800(68)80081-X
  10. H. M. Xing and H. L. Liu, Minus total domination in graphs, Czechoslovak Math. J. 59 (2009), no. 4, 861-870. https://doi.org/10.1007/s10587-009-0060-0
  11. H. Yan, X. Q. Yang, and E. F. Shan, Upper minus total domination in small-degree regular graphs, Discrete Math. 307 (2007), no. 21, 2453-2463. https://doi.org/10.1016/j.disc.2006.11.011