References
- J. A. Bondy and V. S. R. Murty, Graph Theory with Application, Elsevier, Amsterdam, 1976.
- L. Harris and J. H. Hattingh, The algorithmic complexity of certain functional variations of total domination in graphs, Australas. J. Combin. 29 (2004), 143-156.
- T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- J. Huang and J. M. Xu, The total domination and total bondage numbers of extended de Bruijn and Kautz digraphs, Comput. Math. Appl. 53 (2007), no. 8, 1206-1213. https://doi.org/10.1016/j.camwa.2006.05.020
- L. Y. Kang, E. F. Shan, and L. Caccetta, Total minus domination in k-partite graphs, Discrete Math. 306 (2006), no. 15, 1771-1775. https://doi.org/10.1016/j.disc.2006.03.004
- C. M. Lee, Signed and minus total domination on subclasses of bipartite graphs, Ars Combin. 100 (2011), 129-149.
- E. F. Shan and T. C. E. Cheng, Remarks on the minus (signed) total domination in graphs, Discrete Math. 308 (2008), no. 15, 3373-3380. https://doi.org/10.1016/j.disc.2007.06.015
- S. M. Sheikholeslami, Signed total domination numbers of directed graphs, Util. Math. 85 (2011), 273-279.
- G. Szekeres and H. S. Wilf, An inequality for the chromatic number of a graph, J. Combinatorial Theory 4 (1968), 1-3. https://doi.org/10.1016/S0021-9800(68)80081-X
- H. M. Xing and H. L. Liu, Minus total domination in graphs, Czechoslovak Math. J. 59 (2009), no. 4, 861-870. https://doi.org/10.1007/s10587-009-0060-0
- H. Yan, X. Q. Yang, and E. F. Shan, Upper minus total domination in small-degree regular graphs, Discrete Math. 307 (2007), no. 21, 2453-2463. https://doi.org/10.1016/j.disc.2006.11.011