DOI QR코드

DOI QR Code

An Experimental Study on Ground Resistivity and Grounding Resistance of Water Environment

수상환경의 대지저항률 및 접지저항 측정의 실험적 연구

  • 최영관 (한국수자원공사 K-water연구원)
  • Received : 2013.12.18
  • Accepted : 2014.04.10
  • Published : 2014.04.30

Abstract

Main ground net of power plant is formed to protect human body from increase in potential gradient caused by grounding current during ground fault. Calculations during ground design are generally performed according to IEEE Std-80-2000 (Kepco Design Standard 2602). However, it is difficult to apply this Standard to water environment, and a grounding technology is required to secure grounding resistance of floating photovoltaic system. Therefore the aim of this paper is to investigate and analyze ground resistivity on the water surface and underwater of reservoir using Wenner 4-pin method, a general method of measuring ground resistivity. Also, grounding resistance of floating photovoltaic systems currently in operation was measured and analyzed using the voltage drop method suggested in the international standard (IEEE Std-81) to propose a grounding method for stable grounding of floating photovoltaic system. The resistivity at 1m below the surface of water ($126.3969[{\Omega}{\cdot}m]$) is mostly higher than resistivity at the river bed ($97.5713[{\Omega}{\cdot}m]$). Also the proposed grounding anchor method was determined as the most effective method of securing stable grounding resistance in floating photovoltaic systems and is expected to be utilized as a ground method for future floating photovoltaic generation systems.

지락사고 시 지락전류에 의한 전위경도 상승으로부터 인체를 보호하기 위하여 발전소의 주 접지망을 구성한다. 이를 위한 접지설계시 일반적으로 IEEE Std-80-2000(한전설계기준 2602)에 의하여 계산한다. 그러나 이는 수상환경에서 적용하기 힘들어 수상태양광의 접지저항 확보를 위한 접지기술이 명확하지 않다. 그런데 500kW 수상태양광의 모듈표면 및 금속덕트에 정전기가 발생하고 있고, 안정적인 접지확보를 위해서는 수상환경의 접지방식에 대한 구체적인 방안이 필요한 실정이다. 따라서 본 논문에서는 수상환경에서 Wenner 4 전극법으로 대지저항률을 조사.분석하였으며, 현재 운영중인 수상태양광의 접지저항을 국제규격(IEEE std-81)에서 제시하는 전압강하법으로 측정 분석하여 안정적인 접지확보를 위한 수상태양광 접지방안을 제시하였다. 수면 1m 수중의 저항률이 ($126.3969[{\Omega}{\cdot}m]$) 하상의 저항률($97.5713[{\Omega}{\cdot}m]$)보다 대체로 높은 것을 측정 분석되었고, 제시한 접지앵커 접지방안은 수상태양광의 더욱 안정된 접지저항 확보를 위해 경제적으로 가장 효과적인 방법으로 판단되며, 향후 수상태양광 발전의 접지방법으로 활용될 것으로 기대된다.

Keywords

References

  1. Y.K Choi, N.H Lee, K.J Kim, Empirical Research on the efficiency of Floating PV systems compared with Overland PV Systems, Advances in Information Technology and Computer Science, CES-CUBE 2013, ASTL Vol. 25, pp. 284 - 289, 2013
  2. K-water, Groundwork research for Commercialization of Floated Photovoltaic System, 2011.
  3. Y.K Choi, N.H Lee, A.K Lee, K.J Kim, A Study on Major Design Elements of Tracking-Type Floating Photovoltaic Systems, IGCE, Vol. 3, No.1, pp. 70 - 74, January 2014
  4. Y.K Choi, J.S Yi, The Technique of Installing Floating Photovoltaic Systems, Jounal of The Korea Academia-Industrial cooperation Society, Vol. 14, No.9, pp. 4447 - 4454, Sep. 2013 https://doi.org/10.5762/KAIS.2013.14.9.4447
  5. Y.K Choi, N.H Lee, K.J Kim, Analysis of the Grounding System of Floating Photovoltaic Systems, ISGCE2013 ETCP-1169, July 2013

Cited by

  1. Safety Analysis of Grounding Resistance with Depth of Water for Floating PVs vol.10, pp.9, 2017, https://doi.org/10.3390/en10091304