DOI QR코드

DOI QR Code

Features of EEG Signal during Attentional Status by Independent Component Analysis in Frequency-Domain

독립성분 분석기법에 의한 집중 상태 뇌파의 주파수 요소 특성

  • Kim, Byeong-Nam (Graduate School of Biomedical Engineering, Yonsei University) ;
  • Yoo, Sun-Kook (Department of Medical Engineering, College of Medicine, Yonsei University)
  • 김병남 (연세대학교 생체공학협동과정) ;
  • 유선국 (연세대학교 의과대학 의학공학교실)
  • Received : 2013.12.10
  • Accepted : 2014.04.10
  • Published : 2014.04.30

Abstract

In this paper, electroencephalographic (EEG) signal of one among subjects measured biosignal with visual evoked stimuli inducing the concentration was analyzed to detect the changes in the attention status during attention task fulfillment from January to February, 2011. The independent component analysis (ICA) was applied to EEG signals to isolate the attention related innate source signal within the brain and Electroculogram (EOG) artifact from measured EEG signals at the scalp. The consecutive accumulation of short time Fourier transformed (STFT) attention source signal with excluded EOG artifact can enhance the regular depiction of EPOCH graph and spectral color map representing time-varying pattern. The extracted attention indices associated with somatosensory rhythm (SMR: 12-15 Hz), and theta wave (4-7 Hz) increase marginally over time. Throughout experimental observation, the ICA with STFT can be used for the assessment of participants' status of attention.

본 연구에서는 작업수행시의 집중상태 변화를 검출하기 위하여 2011년 1~2월 동안 집중을 유발하는 시각유발자극에 대하여 생체신호를 측정한 피험자들 중 한명의 뇌파신호를 분석하였다. 두피에서 측정한 뇌파신호로부터 집중관련 뇌 안에서의 발원 신호와 안구운동잡음 신호를 분리하기 위하여 독립성분 분석기법을 측정뇌파 신호에 적용하였다. 안구운동잡음신호가 제거된 집중관련 신호원을 단시간 푸리에 변환하여 주파수 성분 신호를 연속적으로 축적함으로서 시변 특징 형태를 나타내는 에포크 그래프와 스펙트럴 칼라 맵에서의 도식 표현상 규칙성을 향상 시킬 수 있었다. 추출한 감각운동리듬 (SMR: 12-15Hz)과 세타파 리듬 (4-7Hz)관련 집중 지표는 집중시험시간이 경과함에 따라 증가 하였다. 실험을 통하여 단시간 푸리에 변환과 결합한 독립성분 분석기법은 참여자의 집중상태 변화를 분석하는데 사용 할 수 있을 것이다.

Keywords

References

  1. J.L. Steven, F.W. Geoffrey, K.V. Edward, "Event-related potential studies of attention", Trends in Cognitive Sciences, Vol. 4, No. 11, pp. 432-440, November 2000. DOI: http://dx.doi.org/10.1016/S1364-6613(00)01545-X
  2. S. Woltering, J. Jung, Z. Liu, R. Tannock, "Resting state EEG oscillatory power differences in ADHD college students and their peers", Behavioral and Brain Functions, pp. 8-60, 2012.
  3. A.G. Correa, E. Laciar, H.D. Patino, M.E. Valentinuzzi, "Artifact removal from EEG signals using adaptive filters in cascade" Journal of Physics: Conference Series, Vol.90, No.1, 2007. DOI: http://dx.doi.org/10.1088/1742-6596/90/1/012081
  4. O.G. Lins, T.W. Picton, P. Berg, M. Scherg, "Ocular artifacts in recording EEGs and event-related potentials II: source dipoles and source components", Brain Topography, Vol. 1, pp. 65-78, 1993. DOI: http://dx.doi.org/10.1007/BF01234128
  5. P.S. Kumar, R. Arumuganathan, K. Sivakumar, C. Vimal, "Removal of ocular artifacts in the EEG through wavelet transform without using an EOG reference channel", International Journal of Open Problems in Computer Science and Mathematics, Vol.1, No.3, December 2008.
  6. T.P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, T.J. Sejnowski, "Removal of eye activity from visual event-related potentials in normal and clinical subjects", Clinical Neurophysiology, Vol. 111, pp. 1745-1748, 2000. DOI: http://dx.doi.org/10.1016/S1388-2457(00)00386-2
  7. M.L. Whitehead, A.M. Jimenez, B.B. Stagner, M.J. McCoy, B.L. Lonsbury-Martin, G.K. Martin, "Time-Windowing of Click-Evoked Otoacoustic Emissions to Increase Signal-to-Noise Ratio", ar and Hearing, Vol. 16 No. 6, 1995.
  8. M. Blanco-Velasco, B. Weng, E.B. Kenneth, "ECG signal denoising and baseline wander correction based on the empirical mode decomposition." Computers in Biology and Medicine, Vol. 38, pp. 1-13, 2008. DOI: http://dx.doi.org/10.1016/j.compbiomed.2007.06.003
  9. A. Hyvarinen, E. Oja, "Independent Component Analysis: Algorithms and Applications", Neural Networks. Vol. 13, pp. 411-430, 2000. DOI: http://dx.doi.org/10.1016/S0893-6080(00)00026-5
  10. B.K. Min, 'Spectral analysis of brain oscillatory activity' Korean Journal of Cognitive Science, Vol. 20, No. 2, pp. 155-181, 2009. https://doi.org/10.19066/cogsci.2009.20.2.003
  11. D. Vernon*, T. Egner, N. Cooper, T. Compton, C. Neilands, A. Sheri, J. Gruzelier, "The effect of training distinct neurofeedback protocols on aspects of cognitive performance", nternational Journal of Psychophysiology, Vol 47, pp. 75-85, 2003. DOI: http://dx.doi.org/10.1016/S0167-8760(02)00091-0
  12. C.J. Lee, "Development of the Game for Increasing Intensive Power using EEG Signal", Journal of Korea Game Society, Vol. 9 No. 2, April 2009.
  13. M.B. Sterman, L. Friar, "Suppression of seizures in an epileptic following sensorimotor EEG feedback training." Electroencephalography and Clinical Neurophysiology, Vol. 33, pp. 89-95, 1972. DOI: http://dx.doi.org/10.1016/0013-4694(72)90028-4
  14. de Beer MSc, Ms Nicole AM, Maarten van de Velde MSc. "Clinical evaluation of a method for automatic detection and removal of artifacts in auditory evoked potential monitoring." Journal of clinical monitoring, Vol. 11, pp. 381-391, 1995. DOI: http://dx.doi.org/10.1007/BF01616744
  15. T.D. Lagerlund, F.W. Sharbrough, N.E. Busacker. "Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition." Journal of Clinical Neurophysiology, Vol. 14, pp. 73-82, 1997. DOI: http://dx.doi.org/10.1097/00004691-199701000-00007