DOI QR코드

DOI QR Code

Influences of Fractionation of Stable Isotopic Composition of Rain and Snowmelt on Isotopic Hydrograph Separation

강우와 융설의 안정동위원소 변동에 의한 동위원소 수문분리법의 계통오차계산

  • Lee, Jeonghoon (Department of Science Education, Ewha Womans University) ;
  • Koh, Dong-Chan (Groundwater Department, Korea Institute of Geosciences and Mineral Resources) ;
  • Choo, Mi Kyung (Department of Science Education, Ewha Womans University)
  • 이정훈 (이화여자대학교 과학교육과) ;
  • 고동찬 (한국지질자원연구원 지하수연구실) ;
  • 추미경 (이화여자대학교 과학교육과)
  • Received : 2014.02.24
  • Accepted : 2014.03.19
  • Published : 2014.04.30

Abstract

An isotopic hydrograph separation technique has been able to determine the contribution of new water (event water such as rain or snowmelt) and old water (pre-event water like groundwater) to a stream hydrograph for last several decades using stable water isotopes. It is based on the assumption that the isotopic compositions of both new water and old water at a given instant in time are known and the stream water is a mixture of the two waters. In this study, we show that there is a systematic error (standard error in the new water fraction) in the isotopic hydrograph separation if the average isotopic compositions of new water were used ignoring the temporal variations of those of new water. The standard error in the new water fraction is caused by: (1) the isotopic difference between the average value and temporal variations of new water; (2) the new water fraction as runoff contributing to the stream during rainfall or spring melt; and (3) the isotopic differences between new and old water (inversely). The standard error is large, in particular, when new water dominates the stream flow, such as runoff during intense rainfall and in areas of low infiltration during spring melt. To reduce the error in the isotopic hydrograph separation, incorporation of fractionation in the isotopic composition of new water observed at a point should be considered with simultaneous sampling of new water, old water and stream water.

물안정동위원소를 이용하여 지하수와 강우 또는 융설이 하천에 미치는 영향을 정량적으로 분리하는 방법을 동위원소 수문분리법이라고 하며 지난 30년 동안 사용되어 왔다. 오래된 물(지하수)과 새로운 물(강우 및 융설)의 두 성분이 하천에 영향을 미치는 것으로 가정하고 새로운 물과 오래된 물의 주어진 시간동안의 동위원소를 측정하여 각각의 성분에 대한 비율을 결정할 수 있다. 본 연구에서는 동위원소 수문분리법을 수계에 적용할 때 새로운 물의 시간적인 안정동위원소분화를 고려하지 않고 새로운 물의 평균값을 이용하였을 때 계통오차가 발생함을 보였다. 이러한 표준오차의 크기는 (1) 새로운 물이 하천에 많이 기여할수록, (2) 사용된 평균값과 분화된 새로운 물의 안정동위원소 값과 차이가 클수록, 마지막으로 (3) 오래된 물과 새로운 물의 안정동위원소 값의 차이가 작을수록 커진다. 집중 호우로 유출이 증가하거나 봄철에 지면이 아직 녹지 않아 융설이 유출이 되는 경우 새로운 물이 하천에 미치는 영향이 커지게 되어 상대오차 역시 증가한다. 이러한 오차를 줄이기 위해서 각각의 새로운 물, 오래된 물, 하천의 안정동위원소를 같은 시간 간격으로 측정하여 새로운 물이 분화되는 것을 고려한 수문분리법을 수행하는 것을 고려하여야 한다.

Keywords

References

  1. Cho, S.-H., Ha, K., Kim, T., Cheon, S., and Song, M.Y., 2007, Hydrograph separation for two consecutive rainfall events using tracers (${\delta}^{18}O$ & Cl). Journal of Geological Society of Korea, 43, 253-263. (in Korean)
  2. Cho, S.-H., Moon, S.-H., Koh, D.-C., Cho, M., and Song, M.Y., 2005, Hydrograph separation using a chemical tracer (Cl) and estimation of baseflow rate in two small catchments, Yuseong, Daejeon. Journal of Geological Society of Korea, 41, 427-436. (in Korean)
  3. Cho, S.-H., Moon, S.-H., Lee, K.-S., and Kim, S.-C., 2003, Hydrograph separation using $^{18}O$ tracer in a small catchment, Cheongdo. Journal of Geological Society of Korea, 39, 509-518. (in Korean)
  4. Dincer, T., Payne, B.R., Florkowski, T., Martinec, J., and Tongiorgi, E., 1970, Snowmelt runoff from measurements of tritium and oxygen-18. Water Resources Research, 6, 110-124. https://doi.org/10.1029/WR006i001p00110
  5. Feng, X., Taylor, S., Renshaw, C.E., and Kirchner, J.W., 2002, Isotopic evolution of snowmelt, 1. A physically based one-dimensional model. Water Resources Research, 38, 1217, doi:10.1029/2001WR000814.
  6. Genereux, D., 1998, Quantifying uncertainty in tracer-based hydrograph separation. Water Resources Research, 34, 915-919. https://doi.org/10.1029/98WR00010
  7. Gremillion, P., Gonyeau, A., and Wanielista, M., 2000, Application of alternative hydrograph separation models to detect changes in flow paths in a watershed undergoing urban development. Hydrological Processes, 14, 1485-1501. https://doi.org/10.1002/1099-1085(20000615)14:8<1485::AID-HYP988>3.0.CO;2-1
  8. Ha, K., Moon, D., Koh, K.-W., and Park, K.-W., 2008, Runoff characteristics of the Oedocheon watershed in Jeju Island. Journal of Korea Society of Soil and Groundwater Environment, 13, 20-32. (in Korean)
  9. Hooper, R.P. and Shoemaker, C.A., 1986, A comparison of chemical and isotopic hydrograph separation. Water Resources Research, 22, 1444-1454. https://doi.org/10.1029/WR022i010p01444
  10. Kirchner, J.W., Feng, X., and Neal, C., 2000, Fractal stream chemistry and its implication for contaminant transport in catchments. Nature, 403, 524-527. https://doi.org/10.1038/35000537
  11. Klaus, J. and McDonnell, J.J., 2013, Hydrograph separation using stable isotopes: Review and evaluation. Journal of Hydrology, 505, 47-64. https://doi.org/10.1016/j.jhydrol.2013.09.006
  12. Lawrence, J.R. and Gedzelman, S.D., 1996, Low stable isotope ratios of tropical cyclone rains. Geophysical Research Letters, 23, 527-530. https://doi.org/10.1029/96GL00425
  13. Lee, J., Feng, X., Faiia, A, Posmentier, E., Osterhuber, R., and Kirchner, J., 2010, Isotopic evolution of snowmelt: A new model incorporating mobile and immobile water. Water Resources Research, 46, W11512, doi:10.1029/2009WR008306.
  14. Lee, J., Feng, X., Posmentier, E.S., Faiia, A.M., and Taylor, S., 2009, Stable isotopic exchange rate constant between snow and liquid water. Chemical Geology, 260, 57-62. https://doi.org/10.1016/j.chemgeo.2008.11.023
  15. Lee, J., Choi, H., Oh, J., Na, U.-S., Kwak, H., and Hur, S.D., 2013, Moisture transport observed by water vapor isotopes in the vicinity of coastal area, Incheon, Korea. Economic and Environmental Geology, 46, 339-344. (in Korean) https://doi.org/10.9719/EEG.2013.46.4.339
  16. Lee, K.-S., Grundstein, A.J., Wenner, D.B., Choi, M.-S., Woo, N.-C., and Lee, D.-H., 2003, Climatic controls on the stable isotopic composition of precipitation in Northeast Asia. Climate Research, 23, 137-148. https://doi.org/10.3354/cr023137
  17. Lee, K.-S., Park, Y., Kim, Y., Jeong, J.-H., Park, S.-K., Shin, H.-S., and Bong, Y.-S., 2006, A preliminary hydrograph separation study in a small forested watershed using natural tracers. Journal of the Geological Society of Korea, 42, 427-437. (in Korean)
  18. Pionke, M.G. and Dewalle, D.R., 1992, Intra-and interstorm $^{18}O$ trends for selected rainstorms in Pennsylvania. Journal of Hydrology, 138, 131-143. https://doi.org/10.1016/0022-1694(92)90160-W
  19. Sklash, M.G. and Farvolden, R.N., 1979, The role of grondwater in storm runoff. Journal of Hydrology, 43, 45-65. https://doi.org/10.1016/0022-1694(79)90164-1
  20. Taylor, S., Feng, X., Kirchner, J.W., Osterhuber, R., Klaue, B., and Renshaw, C.E., 2001, Isotopic evolution of a seasonal snowpack and its melt. Water Resources Research, 37, 759-769. https://doi.org/10.1029/2000WR900341
  21. Taylor, S., Feng, X., Williams, M., and McNamara, J., 2002, How isotopic fractionation of snowmelt affects hydrograph separation. Hydrological Processes, 16, 3683-3690. https://doi.org/10.1002/hyp.1232
  22. Unnikrishna, P.V., McDonnell, J.J., and Kendall, C., 2002, Isotope variations in a Sierra Nevada snowpack and their relation to meltwater. Journal of Hydrology, 260, 38-57. https://doi.org/10.1016/S0022-1694(01)00596-0

Cited by

  1. A Study of Stable Isotopic Variations of Antarctic Snow by Albedo Differences vol.37, pp.2, 2015, https://doi.org/10.4217/OPR.2015.37.2.141
  2. Isotopic Hydrograph Separation Using Artificial Rain-on-snow Experiments and Its Implications by Each Tracer vol.38, pp.4, 2016, https://doi.org/10.4217/OPR.2016.38.4.331
  3. A review on hydrograph separation using isotopic tracers vol.53, pp.2, 2017, https://doi.org/10.14770/jgsk.2017.53.2.339
  4. Influence of pre-event water on streamflow in a granitic watershed using hydrograph separation vol.76, pp.2, 2017, https://doi.org/10.1007/s12665-017-6402-6