• Title/Summary/Keyword: isotopic hydrograph separation

Search Result 4, Processing Time 0.027 seconds

Influences of Fractionation of Stable Isotopic Composition of Rain and Snowmelt on Isotopic Hydrograph Separation (강우와 융설의 안정동위원소 변동에 의한 동위원소 수문분리법의 계통오차계산)

  • Lee, Jeonghoon;Koh, Dong-Chan;Choo, Mi Kyung
    • Journal of the Korean earth science society
    • /
    • v.35 no.2
    • /
    • pp.97-103
    • /
    • 2014
  • An isotopic hydrograph separation technique has been able to determine the contribution of new water (event water such as rain or snowmelt) and old water (pre-event water like groundwater) to a stream hydrograph for last several decades using stable water isotopes. It is based on the assumption that the isotopic compositions of both new water and old water at a given instant in time are known and the stream water is a mixture of the two waters. In this study, we show that there is a systematic error (standard error in the new water fraction) in the isotopic hydrograph separation if the average isotopic compositions of new water were used ignoring the temporal variations of those of new water. The standard error in the new water fraction is caused by: (1) the isotopic difference between the average value and temporal variations of new water; (2) the new water fraction as runoff contributing to the stream during rainfall or spring melt; and (3) the isotopic differences between new and old water (inversely). The standard error is large, in particular, when new water dominates the stream flow, such as runoff during intense rainfall and in areas of low infiltration during spring melt. To reduce the error in the isotopic hydrograph separation, incorporation of fractionation in the isotopic composition of new water observed at a point should be considered with simultaneous sampling of new water, old water and stream water.

Isotopic Hydrograph Separation Using Artificial Rain-on-snow Experiments and Its Implications by Each Tracer (인공강우실험을 이용한 동위원소수문분리 및 각각의 추적자에 따른 의미)

  • Lee, Jeonghoon
    • Ocean and Polar Research
    • /
    • v.38 no.4
    • /
    • pp.331-338
    • /
    • 2016
  • Many studies using tracers have been conducted to understand a physical process in a system. Rain-on-snow could accelerate snowmelt processes, which influences the hydrological process in both temperate and polar regions. Hydrological and ecological conditions will be affected by the amount and timing of discharge reaching the bottom of a snowpack. The discharge consists of the rain-on-snow, pore water penetrating into the snowpack and natural meltwater. In this study, after a rain-on-snow experiment, we conducted an isotopic hydrograph separation to distinguish rainwater and pore water from meltwater. Using the isotopic data of snow and meltwater from Lee et al. (2010), two components were separated based on the assumption that rainwater and pore water are new water and natural meltwater is old water. After the second rain-on-snow experiment, the maximum contributions of rainwater and pore water reached up to 69% of the discharge and then decreased. During the study period, the measured total discharge was 4153 L and 40% (based on hydrogen isotope) of rainwater and pore water was calculated in the discharge, which is not consistent with what Lee et al. (2016) calculated using chemical separation (63%). This inconsistency can be explained by how an end-member was defined in both approaches. The contributions of artificial rainonsnow and pore water to melwater discharge range between the two methods. This study will suggest a mixing calculation from isotopic compositions of the Southern Ocean.

Rayleigh Fractionation of Stable Water Isotopes during Equilibrium Freezing (평형 냉동에 의한 물동위원소의 레일리분별)

  • Lee, Jeonghoon;Jung, Hyejung;Nyamgerel, Yalalt
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.61-67
    • /
    • 2021
  • Isotopic compositions of snow or ice have been used to reconstruct paleoclimate and to calculate contribution to streamwater using isotopic hydrograph separation as an end member. During freezing and melting of snow or ice, isotopic fractionation occurs between snow or ice and liquid water. Isotopic evolution during melting process has been studied by field, melting experiments and modeling works, but that during freezing has not been well studied. In this review, isotopic fractionation during equilibrium freezing is discussed using the linear relationship between two stable water isotopes (oxygen and hydrogen) and the Rayleigh fractionation. Snow, evaporated from nearby ocean and condensated, follows the Global Meteoric Water Line (slope of 8), but the melting and freezing of snow affect the linear relationship (slope of 19.5/3.1~6.3). The isotopic evolution of liquid water by freezing observed in the open system during Rayleigh fractionation is also seen in the closed system. The isotopic evolution of snow or ice in the open system where the snow or ice is continuously removed becomes more enriched than the residual liquid water by the fractionation factor. The isotopic evolution of snow or ice in the closed system eventually equals the original isotopic compositions of liquid water. It is expected the understanding of isotopic evolution of snow or ice by freezing to increase the accuracy of the paleoclimate studies and hydrograph separation.

Old Water Contributions to a Granitic Watershed, Dorim-cheon, Seoul

  • Kim, Hyerin;Cho, Sung-Hyun;Lee, Dongguen;Jung, Youn-Young;Kim, Young-Hee;Koh, Dong-Chan;Lee, Jeonghoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.34-40
    • /
    • 2015
  • It is reported that the intensity of rainfall will likely increase, on average, over the world on 2000. For water resources security, many studies for flow paths from rainfall or snowmelt to subsurface have been conducted. In Korea, few isotopic studies for characterizations of flow path have been undertaken. For a better understanding of how water derived from atmosphere moves to subsurface and from subsurface to stream, an analysis of precipitation and stream water using oxygen-18 and deuterium isotopes in a small watershed, Dorim-cheon, Seoul, was conducted with high resolution data. Variations of oxygen-18 in precipitation greater than 10‰ (δ18Omax = −1.21‰, δ18Omin = −11.23) were observed. Isotopic compositions of old water (groundwater) assumed as the stream water collected in advance were −8.98‰ and −61.85‰ for oxygen and hydrogen, respectively. Using a two-component mixing model, hydrograph separation of the stream water in Dorim-cheon was conducted based on weighted mean value of δ18O. As a result, except of instant dominance of rainfall, contribution of old water was dominant during the study period. On average, 71.3% of the old water and 28.7% of rainfall contributed to the stream water. The results show that even in the small watershed, which is covered with thin soil layer in granite mountain region, the stream water is considerably influenced by old water inflow rather than rainfall.