DOI QR코드

DOI QR Code

Polysilane-Based Ceramics as Anodes in Lithium Ion Batteries

Polysilane계 전구체 고분자를 사용한 리튬 이온 전지 음극재용 무기물의 제조

  • Huh, Tae-Hwan (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Im, Hee-Eun (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Yong-Seok (School of Chemical Biomolecular Engineering, Cornell University) ;
  • Joo, Yong L. (School of Chemical Biomolecular Engineering, Cornell University) ;
  • Kwark, Young-Je (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 허태환 (숭실대학교 유기신소재.파이버공학과) ;
  • 임희은 (숭실대학교 유기신소재.파이버공학과) ;
  • 김용석 (코넬대학교 화학공학과) ;
  • 주용락 (코넬대학교 화학공학과) ;
  • 곽영제 (숭실대학교 유기신소재.파이버공학과)
  • Received : 2014.02.20
  • Accepted : 2014.04.08
  • Published : 2014.04.30

Abstract

Two different polysilanes, poly(methyl(phenyl)silane) (PMPS) and poly(methyl(phenyl)silane-co-methyl(vinyl)silane) (PMPS-co-PMVS), were synthesized as precursor polymers to ceramics as anodes in lithium ion batteries. Upon pyrolysis at $1000^{\circ}C$, the polysilanes yielded ceramics with a Si content of 67-70%. The vinyl group containing PMPS-co-PMVS showed a higher ceramic yield than that containing PMPS due to the thermal crosslinking reactions between the vinyl groups. The ceramic products were characterized using elemental analysis, Fourier transform-infrared spectroscopy, thermogravimetry, X-ray diffractometry, and atomic force microscopy. It was revealed that the ceramics from PMPS-co-PMVS had a higher Si atomic content, had more Si-Si bonds, and a more crystalline structure than those from PMPS. The discharge capacities of the ceramics were less than 200 mAh/g, but they showed excellent cycling performance, maintaining their capacities after 100 charge/discharge cycles.

Keywords

References

  1. N. Takami, A. Satoh, M. Hara, and T. Ohsaki, "Rechargeable Lithium-Ion Cells Using Graphitized Mesophase-Pitch-Based Carbon Fiber Anodes", J Electrochem Soc, 1995, 142, 2564-2571. https://doi.org/10.1149/1.2050054
  2. J. O. Besenhard, M. Winter, J. Yang, and W. Biberacher, "Filming Mechanism of Lithium-Carbon Anodes in Organic and Ceramic Electrolytes", J Power Sources, 1995, 54, 228-231. https://doi.org/10.1016/0378-7753(94)02073-C
  3. U. Kasavajjula, C. Wang, and A. J. Appleby, "Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells", J Power Sources, 2007, 163, 1003-1039. https://doi.org/10.1016/j.jpowsour.2006.09.084
  4. A. M. Wilson, B. M. Way, J. R. Dahn, and T. van Buuren, "Nanodispersed Silicon in Pregraphitic Carbons", J Appl Phys, 1995, 77, 2363-2369. https://doi.org/10.1063/1.358759
  5. M. Holzapfel, H. Buqa, W. Scheifele, P. Novak, and F.-M. Petrat, "A New Type of Nano-Sized Silicon/Carbon Composite Electrode for Reversible Lithium Insertion", Chem Commun, 2005, 1566-1568.
  6. C. S. Wang, G. T. Wu, X. B. Zhang, Z. F. Qi, and W. Z. Li, "Lithium Insertion in Carbon-Silicon Composite Materials Produced by Mechanical Milling", J Electrochem Soc, 1998, 145, 2751-2758. https://doi.org/10.1149/1.1838709
  7. Y. N. Li, B. Wang, J. Yang, X. Yuan, and Z. Ma, "$Cu_5Si$-Si/C Composites for Lithium-Ion Battery Anodes", J Power Sources, 2006, 153, 371-374. https://doi.org/10.1016/j.jpowsour.2005.05.023
  8. X. Zhang, P. K. Patil, C. Wang, A. J. Appleby, F. E. Little, and D. L. Cocke, "Electrochemical Performance of Lithium Ion Battery, Nano-Silicon-Based, Disordered Carbon Composite Anodes with Different Microstructures", J Power Sources, 2004, 125, 206-213. https://doi.org/10.1016/j.jpowsour.2003.07.019
  9. G. X. Wang, J. H. Ahn, J. Yao, S. Bewlay, and H. K. Liu, "Nanostructured Si-C Composite Anodes for Lithium-Ion Batteries", Electrochem Commun, 2004, 6, 689-692. https://doi.org/10.1016/j.elecom.2004.05.010
  10. X. Liu, M.-C. Zheng, and K. Xie, "Mechanism of Lithium Storage in Si-O-C Composite Anodes", J Power Sources, 2011, 196, 10667-10672. https://doi.org/10.1016/j.jpowsour.2011.08.072
  11. P. Dibandjo, M. Graczyk-Zajac, R. Riedel, V. S. Pradeep, and G. D. Soraru, "Lithium Insertion into Dense and Porous Carbon-Rich Polymer-Derived SiOC Ceramics", J Eur Ceram Soc, 2012, 32, 2495-2503. https://doi.org/10.1016/j.jeurceramsoc.2012.03.010
  12. R. Kolb, C. Fasel, V. Liebau-Kunzmann, and R. Riedel, "SiCN/C-Ceramic Composite as Anode Material for Lithium Ion Batteries", J Eur Ceram Soc, 2006, 26, 3903-3908. https://doi.org/10.1016/j.jeurceramsoc.2006.01.009
  13. J. Kaspar, G. Mera, A. Nowak, M. Graczyk-Zajac, and R. Riedel, "Electrochemical Study of Lithium Insertion into Carbon-Rich Polymer-Derived SiCN Ceramics", Electrochim Acta, 2010, 56, 174-182. https://doi.org/10.1016/j.electacta.2010.08.103
  14. L. M. Reinold, M. Graczyk-Zajac, Y. Gao, G. Mera, and R. Riedel, "Carbon-Rich SiCN Ceramics as High Capacity/High Stability Anode Material for Lithium-Ion Batteries", J Power Sources, 2013, 236, 224-229. https://doi.org/10.1016/j.jpowsour.2013.02.046
  15. W. Xing, A. M. Wilson, G. Zank, and J. R. Dahn, "Pyrolysed Pitch-Polysilane Blends for Use as Anode Materials in Lithium Ion Batteries", Solid State Ionics, 1997, 93, 239-244. https://doi.org/10.1016/S0167-2738(96)00512-7
  16. H. Tamai, H. Sugahara, and H. Yasuda, "Preparation of Carbons from Pitch Containing Polysilane and Their Anode Properties for Lithium-Ion Batteries", J Mater Sci Lett, 2000, 19, 53-56. https://doi.org/10.1023/A:1006703931974
  17. S. D. Champagne, J. M. Brynaert, and J. Devaux, "Synthesis and Characterization of ${\alpha},\;{\omega}$-Dichloro-Polymethylphenylsilane", Eur Polym J, 1996, 32, 1037-1044. https://doi.org/10.1016/0014-3057(96)00042-0
  18. H.-S. Yang, P.-H. Kang, J.-S. Kim, H. Ryu, and Y.-H. Kim, "Synthesis of Doped Polymethylphenylsilane Conductive Polymers and Their Structure Characteristics", J Korean Ind Eng Chem, 1996, 7, 954-962.
  19. H. Nagai, Y. Nakata, M. Suzuki, and T. Okutani, "Structure and Morphology of Phenylsilanes Polymer Films Synthesized by the Plasma Polymerization Method", J Mater Sci, 1988, 33, 1897-1905.
  20. W. R. Schmidt, L. V. Interrante, R. H. Doremus, T. K. Trout, P. S. Marchetti, and G. E. Maciel, "Pyrolysis Chemistry of an Organometallic Precursor to Silicon Carbide", Chem Mater, 1991, 3, 257-267. https://doi.org/10.1021/cm00014a011
  21. A. J. Steckl, C. Yuan, Q.-Y. Tong, U. Gosele, and M. J. Loboda, "SiC Silicon-on-Insulator Structures by Direct Carbonization Conversion and Postgrowth from Silacyclobutane", J Electrochem Soc, 1994, 141, L66-L68. https://doi.org/10.1149/1.2054989