DOI QR코드

DOI QR Code

Energy Harvesting from Reverse Electrodialysis in Ion-Selective Membrane Formed with Self-Assembled Nanoparticles

미세유체칩 내 자기조립화된 나노입자로 이루어진 이온교환막을 이용한 역전기투석 에너지 발전

  • Received : 2014.02.21
  • Accepted : 2014.03.13
  • Published : 2014.05.01

Abstract

This paper presents a novel microplatform for high power generation based on reverse electrodialysis. The ideal cation-selective membrane for power generation was realized using geometrically controlled in situ self-assembled nanoparticles. Our proposed membranes can be constructed through a simple and cost-effective process that uses microdroplet control with nanoparticles in a microchannel. Another advantage of our system is that the maximum power and energy conversion efficiency can be improved by changing the geometry of the microchannel and proper selection of the nanoparticle size and material. This proposed platform can be used to supply power sources to other microdevices and contribute to a fundamental understanding of ion transport behavior and the power generation mechanism.

본 논문은 미세유체 시스템에서 농도차에 의한 역전기투석을 이용하여 에너지발전을 할 수 있는 장치를 제안한다. 역전기투석을 위한 이온교환막은 미세유체칩의 적정 위치에 자기조립화된 나노입자 사이의 공극으로 이루어지며, 이는 마이크로 용량의 나노입자가 분산된 용액 방울을 제어함으로써 쉽고 저렴한 방법으로 제작이 가능하다. 본 제안 시스템은 미세유체칩의 형상을 변형하거나 나노입자의 사이즈, 혹은 나노입자의 종류를 손쉽게 바꿔가며 최대 파워와 에너지 변환 효율을 향상 시킬 수 있다는 장점이 있다. 앞으로, 본 연구에서 제안하는 디바이스는 랩온어칩 시스템에서 다른 미세장치로 에너지를 공급하는 매개체로 이용 될 수 있을 뿐 아니라 더 다양한 재료를 이용함으로써 이온 교환현상 및 에너지 발전의 기초 연구에 활용될 수 있을 것이라 기대한다.

Keywords

References

  1. Kim, D.-K., Duan, C., Chen, Y.-F. and Majumdar, A., 2010, "Power Generation from Concentration Gradient by Reverse Electrodialysis in Ion-Selective Nanochannels," Microfluidics and Nanofluidics, Vol. 9, No. 6, pp. 1215-1224. https://doi.org/10.1007/s10404-010-0641-0
  2. Guo, W., Cao, L., Xia, J., Nie, F.-Q., Ma, W., Xue, J., Song, Y., Zhu, D., Wang, Y. and Jiang, L., 2010, "Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source," Advanced Functional Materials, Vol. 20, No. 8, pp. 1339-1344. https://doi.org/10.1002/adfm.200902312
  3. Zeng, Y. and D.J. Harrison, 2007, "Self-Assembled Colloidal Arrays as Three-Dimensional Nanofluidic Sieves for Separation of Biomolecules on Microchips," Analytical Chemistry, Vol. 79, No. 6, pp. 2289-2295. https://doi.org/10.1021/ac061931h
  4. Light, T. S., 1972, "Standard Solution for Redox Potential Measurements," Analytical Chemistry, Vol. 44, No. 6, 1038-1039. https://doi.org/10.1021/ac60314a021
  5. Choi, E., Chang, H.K., Lim, C.Y., Kim, T. and Park, J., 2012, "Concentration Gradient Generation of Multiple Chemicals Using Spatially Controlled Self-Assembly of Particles in Microchannels," Lab on a Chip, Vol. 12, No. 20, pp. 3968-3975 https://doi.org/10.1039/c2lc40450h
  6. Chung, S., Yun, H. and Kamm, R. D, 2009, "Nanointerstice-Driven Microflow," Small, Vol. 5, No. 5, 609-613. https://doi.org/10.1002/smll.200800748
  7. Kwon, K., Lee, S. J., Li, L., Han, C., Kim, D., 2014, "Energy Harvesting System Using Reverse Electrodialysis with Nanoporous Polycarbonate Track-Etch Membranes," International Journal of Energy Research, Vol. 38, No. 4, 530-537. https://doi.org/10.1002/er.3111
  8. Sendner, C., Horinek, D., Bocquet, L. and Netz, R.R., 2009, "Interfacial Water at Hydrophobic and Hydrophilic Surfaces: Slip, Viscosity, and Diffusion," Langmuir, Vol. 25, No. 18, pp. 10768-10781 https://doi.org/10.1021/la901314b