DOI QR코드

DOI QR Code

파이프 내 흡음재 및 형상에 따른 유동 및 방사소음에 대한 수치해석적 연구

Effect of the Inner Material and Pipe Geometry on the Flow and Induced Radiated Noise

  • Lee, Su-Jeong (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Lim, Hee-Chang (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • 투고 : 2014.01.22
  • 심사 : 2014.03.12
  • 발행 : 2014.05.01

초록

파이프 유동 내에서 일어나는 소음 및 진동현상의 경우 일반적으로 난류유동과 근처의 벽면사이의 유동유기진동에 의해 일어나게 된다. 복잡한 난류유동을 가지는 확장관의 단순한 경우에서 본 연구는 수행되었지만, 방사소음의 경우 주어진 모델에서 크기와 형상 그리고 두께 등에 상당히 영향을 받게 된다. 또한, 방사소음은 그 파가 퍼져나가면서 주위 시스템에 교란특성이나 불안정성을 야기시키게 되는데 결국 중요한 파단과 파손을 일으키게 된다. 본 연구는 다양한 상용프로그램들 (Fluent, NASTRAN, 그리고 VIRTUAL LAB)을 이용하여 이러한 현상을 파악하고자 하였다. 이 연구를 통해 유동소음에 있어 깔려있는 물리현상들을 이해하고자 하였다. 확장관의 경우 단면적의 급격한 변화에 의해 박리와 높은 압력강하를 겪게 되는데, 방사소음의 계산으로 이 방사소음의 크기가 100에서 500Hz영역에서 전체적으로 약 20dB정도 감소시킬 수 있는 것을 확인할 수 있었다.

Noise and vibration, which occur in a pipe, are usually caused by the interaction between the turbulent flow and nearby wall. Although it can be estimated by a simple case of expanded pipes having complex turbulent flow, the radiated noise is highly dependent upon the size, shape, and thickness of the given model. In addition, the radiated noise propagates and has serious interference and destabilization effects on the surrounding systems, which can lead to fatigue fracture and failure. This study took advantage of the variety of commercial programs, such as FLUENT (flow solver), NASTRAN (dynamic motion solver of complex structures) and VIRTUAL LAB (radiated noise solver) based on the boundary element method (BEM), to understand the underlying physics of flow noise. The expanded pipe has separation and a high pressure drop because of the abrupt change in the cross-section. Based on the radiated noise calculations, the noise level was reduced to around 20 dB in the range of 100-500 Hz.

키워드

참고문헌

  1. Kim, M. H., Chung, W. I. and Chun, I. B., 2000, "A Study on the Flow Characteristics of Steady State and Pressure Variation Inside the Muffler with the Inflow of Pulsating Exhaust Gas," Journal of KSAE, Vol. 7, No. 8, pp. 150-159.
  2. Mehdizadeh, O. Z. and Paraschivoiu, M., 2005, "A Three-Dimensional Finite Element Approach for Predicting the Transmission Loss in Mufflers and Silencers with No Mean Flow," Applied Acoustics, Vol. 66, No. 8, pp. 902-918. https://doi.org/10.1016/j.apacoust.2004.11.008
  3. Hua, X., Herrin, D. W., Wua, T. W. and Elnady, T., 2013, "Simulation of Diesel Particulate Filters in Large Exhaust Systems," Applied Acoustics, Vol.74, No. 12, pp. 1326-1332. https://doi.org/10.1016/j.apacoust.2013.05.009
  4. Cheng, C. Y., Seybert, A. F. and Wu, T. W., 1991, "A Multidomain Boundary Element Solution for Silencer and Muffler Performance Prediction, Journal of Sound and Vibration," Journal of Sound and Vibration, Vol. 151, No. 1, pp. 119-129. https://doi.org/10.1016/0022-460X(91)90655-4
  5. Park, Y. B., Ju, H. D. and Lee, S. B., 2009, "Transmission Loss Estimation of Three-Dimensional Silencers by System Graph Approach Using Multi-Domain BEM," Journal of Sound and Vibration, Vol. 328, No. 4-5, pp. 575-585. https://doi.org/10.1016/j.jsv.2009.08.031
  6. Liu, C., Hao, Z. Y. and Chen, X. R., 2010, "Optimal Design of Acoustic Performance for Automotive Air-Cleaner," Applied Acoustics, Vol.71, No.5, pp. 431-438. https://doi.org/10.1016/j.apacoust.2009.11.010
  7. Wu, T. W., Cheng, C. Y. and Tao, Z., 2003, "Boundary Element Analysis of Packed Silencers with Protective Cloth and Embedded Thin Surfaces," Journal of Sound and Vibration, Vol. 261, No.1, pp. 1-15. https://doi.org/10.1016/S0022-460X(02)00897-0
  8. Lee, G. H., Byun, Y. H. and Na, Y., 2004, "Effect of Inflow Fluctuation of Lox Manifold of Liquid Rocket on the Flow," The Korean Society of Propulsion Engineers, Vol. 8, No. 3, pp. 68-74.
  9. Bae, K. H., Park, J. H., Kim, J. H. and Kim, S. Y., 2008, "A Study on the Acoustic Characteristics of Marine Use Silencer Including Flow Analysis," Korean Fluid Machinery Association, pp. 150-159.
  10. Salim, S. M. and Cheah, S. C., 2009, "Wall $y^+$ Strategy for Dealing with Wall-Bouned Turbulent Flows," Proceedings of the International Multi Conference of Engineers and Computer Scientists, Vol. 2, pp. 1-4.