DOI QR코드

DOI QR Code

Optimal Design of Wind Turbine Tower Model Using Reliability-Based Design Optimization

신뢰성 기반 최적설계를 이용한 풍력 발전기 타워 최적 설계

  • 박용희 (포항공과대학교 엔지니어링 대학원) ;
  • 박현철 (포항공과대학교 엔지니어링 대학원)
  • Received : 2014.01.22
  • Accepted : 2014.03.14
  • Published : 2014.05.01

Abstract

In this study, the NREL 5 MW wind turbine tower model was optimized according to the multi-body dynamics and reliability-based design. The mathematical model was defined as a link-joint system including dynamic characteristics derived from Timoshenko's beam theory. For the optimization problem, the sensitivities to variations in the tower thicknesses and inner and outer diameters were acquired and arranged in terms of safety and efficiency according to bending stress and buckling standards. An optimal design was calculated with the advanced first-order second moment method and used to define a finite element model for validation. The finite element model was simulated by static analysis. The relationship between the multi-body dynamic and finite element method throughout the process was investigated, and the optimal model, which had high endurance despite its low mass, was determined.

본 연구에서는 NREL 5MW 풍력발전기 타워 설계 모델을 다물체 동역학과 신뢰성 기반 최적 설계를 이용하여 최적화하는 연구를 수행하였다. 타워 모델은 티모센코 빔 이론을 이용하여 얻은 동특성을 내포한 링크와 조인트로 이루어진 수학적 모델로 표현하였다. 최적화 문제에서는 높이가 일정한 타워에서 두께, 내 외곽 지름이 변할 때 나타나는 민감도 변화를 비교하여 결과를 도출하였으며, 비교 기준으로 굽힘 응력과 좌굴 안정성을 사용하였다. 일계 이차 모멘트법을 이용한 최적화 알고리즘에서 얻은 최종 모델은 유한요소법을 이용한 정하중 해석에서 최대 응력 분포를 이용한 안전성을 고려를 통해 유효성을 검증하였다. 본 연구 방법을 통해 동역학적 모델과 유한요소 모델간의 연계성을 확인하고, 낮은 타워 설치 비용으로 더 강건한 시스템을 구축할 수 있는 설계 방향을 제시하였다.

Keywords

References

  1. Nicholson, J. C., 2011, "Design of Wind Turbine Tower and Foundation Systems : Optimization Approach," Master's Thesis, University of IOWA.
  2. Uysa, P. E., Farkasb, J., Jarmaib, K. and van Tondera, F., 2007, "Optimisation of a Steel Tower for a Wind Turbine Structure," Engineering Structures, Vol. 29, Issue. 7, pp. 1337-1342. https://doi.org/10.1016/j.engstruct.2006.08.011
  3. Yildirim, S. and OzkolKi, D., 2010, "Wind Turbine Tower Optimization Under Various Requirements by Using Genetic Algorithm," Engineering, Vol.2, No.8, pp. 641-647. https://doi.org/10.4236/eng.2010.28082
  4. Bae, H. M. and Devine, M. D., 1978, "Optimization Models for the Economic Design of Wind Power Systems," Journal of Solar Energy, Vol. 20, pp. 469-481. https://doi.org/10.1016/0038-092X(78)90064-6
  5. Cromack, D. E. and Oscar, D., 1984, Design Optimization of Small Wind Turbines for Low Wind Regimes, Journal for Solar Energy Engineering 106, pp. 347-450. https://doi.org/10.1115/1.3267606
  6. Levy, R. and Lev, O., 1987, "Recent Developments in Structural Optimization," J. Struct. Eng., Vol. 113, No. 9, pp. 1939-1962. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:9(1939)
  7. Grandhi, R. V. and Venkayya, V. B., 1988 "Structural Optimization with Frequency Constraints," AIAA Journal, Vol. 26, No. 7, pp. 858-866. https://doi.org/10.2514/3.9979
  8. Takewaki, I., 1996, "Optimal Frequency Design of Tower Structures via an Approximation Concept," Computers & Structures, Vol. 58, No. 3, pp. 445-452. https://doi.org/10.1016/0045-7949(95)00173-E
  9. Negm, H. M. and Maalawi, K. Y., 2000, "Structural Design Optimization of Wind Turbine Towers," Comput. Struct., Vol. 74, pp. 649-666. https://doi.org/10.1016/S0045-7949(99)00079-6
  10. Lavassas. I., Nikolaidis. G. and Zervas. P., 2003, "Analysis and Design of The Prototype of a Steel 1-MW Wind Turbine Tower," Eng. Struct., Vol. 25, pp. 1097-1106. https://doi.org/10.1016/S0141-0296(03)00059-2
  11. Bazeos, N., Hatzigeorgiou, G. D,, Hondros, I. D., Karamaneas, H., Karabalis, D. L. and Beskos D. E., 2002, "Static, Seismic and Stability Analyses of a Prototype Wind Turbine Steel Tower," Eng. Struct, Vol. 24, pp. 1015-1025. https://doi.org/10.1016/S0141-0296(02)00021-4
  12. Uys, P. E., Farkas, J., Jarmai, K. and van Tonder, F., 2007, "Optimisation of a Steel Tower for a Wind Turbine Structure," Eng. Struct, Vol. 29, pp. 1337-1342. https://doi.org/10.1016/j.engstruct.2006.08.011
  13. Silva, M. A., Brasil, R. M., Arora, J. S., 2008, "Formulations for the Optimal Design of RC Wind Turbine Towers," In Proceedings of the International Conference on Engineering Optimization, Rio de Janeiro, Brazil, 1-5 June.
  14. Jiang, S. and Duan, S., 2001, "A Four-Rigid-Body Element Model and Computer Simulation for Flexible Components of Wind Turbines," Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition, Denver, Vol. 7 Part B, pp. 935-942.
  15. Kim, H.-w. and Yoo, W.-s., 2007, "Selection of Damping Model In Vibration Of Flexible Beams," KSME Autumn conference, pp. 3538-3543.
  16. Craig R. R. Jr. and Kurdila, A. J., 2006, Second Edition, "Fundamentals of Structural Dynamics," John Wiley & Sons, Hoboken NJ.
  17. Hasofer, A. M. and Lind, N. C., 1974, "An Exact and Invariant First Order Reliability Format," Journal of Engineering Mechanics, ASCE, 100(EM-1), pp.111-121.
  18. Jeung, G., Kim, D.-W., Sung, Y. H., Kim, H. G. and Kim, D.-H., 2012, "Reliability-Based Design Optimization of a Superconducting Magnetic Energy Storage System (SMES) Utilizing Reliability Index Approach," Journal of Magnetics, Vol. 17, No.1, pp.46-50. https://doi.org/10.4283/JMAG.2012.17.1.046
  19. Choi, B.-L., Choi, J.-H. and Choi, D.-H., 2005, "Reliability-Based Design Optimization of an Automotive Suspension System for Enhancing Kinematic and Compliance Characteristics," International Journal of Automotive Technology, Vol. 6, No. 3, pp. 235-242.
  20. Yoon, S.-J. and Choi, D.-H., 2004, "Reliability-Based Design Optimization of Slider Air Bearings," Journals of Mechanical Science and Technology, Vol. 18, No. 10, pp. 1722-1729.
  21. Oh, S., Oh, S., Kang, J., Lee, I. and Lyu, S. K., 2013, "A Study on Modeling and Optimization of Tooth Micro-geometry for a Helical Gear Park," International Journal of Precision Engineering and Manufacturing, Vol. 14, No. 3, pp. 423-427. https://doi.org/10.1007/s12541-013-0058-2
  22. Juvinall, R. C. and Marshek, K. M., 2002, "Fundamentals of Machine Component Design," Third Edition, John Willey & Sons, Inc, New York pp. 173-234.
  23. Beedle, L. S., 2005, "Specification for Structural Steel Buildings," American Institute Of Steel Construction, Inc. Chicago, Illinois.
  24. Shabana, A., 2010, "Computational Dynamics," Third Edition, John Wiley & Sons, Inc., New York
  25. Chopra, A. K., 1995, "Dynamics of Structures," Prentice Hall, Englewood Cliffs, NJ, USA.
  26. Kang, B.Y., Han, J. Y., Hong, C. H. and Moon, B. Y., 2012, "Dynamic Analysis of Hybrid Wind Power Composite Blades According to Stacking Properties Method," International Journal of Precision Engineering and Manufacturing, Vol. 13, No. 7, pp. 1161-1166. https://doi.org/10.1007/s12541-012-0154-8
  27. Shi, W., Park, H. C., Baek, J. H., Kim, C. W., Kim, Y. C. and Shin, H. K., 2012, "Study on the Marine Growth Effect on the Dynamic Response of Offshore Wind Turbine," International Journal of Precision Engineering and Manufacturing, Vol. 13, No. 7, pp. 1167-1176. https://doi.org/10.1007/s12541-012-0155-7