DOI QR코드

DOI QR Code

Pedological and Mineralogical Characterizations of Hwangto (Yellow Residual Soils), Naju, Jeollanam-do, Korea

전라남도 나주시 동강면 일대 황토(풍화잔류토)의 토양학적 및 광물학적 특성 연구

  • Kim, Yumi (Department of Earth and Environmental Sciences, Chonnam National University) ;
  • Bae, Jo-Ri (Department of Earth and Environmental Sciences, Chonnam National University) ;
  • Kim, Cheong-Bin (Department of Physical Science Education, Sunchon National University) ;
  • Roh, Yul (Department of Earth and Environmental Sciences, Chonnam National University)
  • 김유미 (전남대학교 지구환경과학과) ;
  • 배조리 (전남대학교 지구환경과학과) ;
  • 김정빈 (순천대학교 물리교육과) ;
  • 노열 (전남대학교 지구환경과학과)
  • Received : 2014.04.01
  • Accepted : 2014.05.01
  • Published : 2014.04.28

Abstract

The objectives of this study were to characterize the physicochemical properties and mineralogy of Hwangto (yellow residual soils) from the southwestern part of Korea and to understand the soil-forming processes of the residual soils from their parent rocks. Both the yellowish residual soils as well as the unweathered and weathered parent rocks were obtained from Jangdong-ri, Donggang-myun, Naju, Jeollanam-do, Korea. The soil samples were examined to analyze the said soil's physicochemical properties such as color, pH, and particle size distribution. A scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were performed in order to understand the mineralogy, chemical composition, and morphology of the soils. Two thin sections of a parent rock were analyzed to study its mineral composition. A particle size analysis of the soils indicates that the residual soil consists of mainly silt and clay (approximately 95%) and that soil textures are silty clay or silt clay loam. The soil colors of the residual soil are dark brown (7.5YR 3/4) through yellowish red (5YR 4/6). The pH of the residual soil ranges from 4.3 to 5.1. The major minerals of the parent rocks were quartz, biotite, chlorite, and plagioclase. The mineralogy of the sand fraction of the residual soil was quartz, biotite, muscovite and sanidine. The mineralogy of the silt fraction of the residual soil was quartz, biotite, muscovite, Na-feldspar, K-feldspar, and sanidine. The clay mineralogy of the soil was goethite, kaolinite, ilite, hydroxy-interlayed vermiculite(HIV), vermiculite, mica, K-feldspar and quartz. The mineral composition of the residual soil and the parent rock indicates that feldspar and mica in the parent rock weathered into illite, vermiculite and hydroxy-interlayed vermiculite(HIV), and finally changed into kaolinite and halloysite in the yellowish residual soils.

본 연구는 전라남도 나주지역 황토의 토양학적 및 광물학적 특성을 확인하고 주변 모암과의 상관관계를 통해 그 기원 및 형성과정을 알아보고자 하였다. 연구지역은 전라남도 나주시 동강면 장동리이며, 토양단면(약 150 cm 깊이)의 황토를 깊이별로 상부, 중부, 하부층으로 나누어 토양학적 특성(색, pH, 입도분리)과 광물학적 특성(광물조성, 입자의 크기, 모양, 화학조성)을 연구하였다. 모암시료는 박편제작 및 현미경관찰을 통해 구성광물을 기재하고 황토의 구성광물과 연관성을 알아보았다. 연구 결과 황토는 pH 4.3~5.1 범위를 갖는 산성토이며 미사와 점토가 주로 구성된(약 95%) 미사질양토와 미사질식양토였다. 모래와 미사의 주 구성광물은 석영, 운모, 장석이며 점토는 침철석, 수산화층간 버미큘라이트, 일라이트, 카올리나이트, 할로이사이트, 질석과 소량의 석영이 포함되어 있었다. 모래와 미사의 SEM-EDX 분석을 통해 구성광물의 형태를 확인한 결과, 풍화작용으로 인해 부식되어 표면이 거칠고 산화철로 피복되어 있는 장석이 관찰되었고 하부층으로 갈수록 그 양은 증가했다. 점토는 TEM 분석을 통해 다양한 형태의 층상규산염광물이 확인되었으며, 상부에서 하부층으로 갈수록 침철석의 양이 증가했는데 이는 상부 층에서 용탈된 산화철이 하부층으로 이동되어 집적된 것으로 사료된다. 황토의 모암으로 사료되는 주변의 암석은 석영, 사장석, 흑운모, 녹니석 등으로 이루어진 화강반암이었다. 즉, 화강암류의 모암에서 장석과 운모 등이 풍화작용을 받아 일라이트, 질석, 수산화층간버미큘라이트 및 카올리나이트로 변하였으며 침철석은 흑운모 풍화에 의해 형성된 것으로서, 본 연구지역의 황토는 오랜 기간 풍화작용에 의해 형성된 풍화잔류토로 판단된다.

Keywords

References

  1. Cho, H.G. (2000) Necessity of Hwangto's mineralogical knowledge in the domestic industry. Journal of the Mineralogical Society of Korea (Mineral & Industry), v.13, n.2, p.1-17.
  2. Douglas, L.A. (1977) Vermiculites. In: Dixon, J.B. and Weed S.B. (eds.), Minerals in Soil Environments. Soil Science Society of America Book Series, p.259-292.
  3. Drever, J.I. (1973) The preparation of oriented clay mineral specimens for X-ray diffraction analysis by a filter- membrane peel technique. American Mineralogist, v.58, p.553-554.
  4. Essington, M.E. (2004) Soil and Water Chemistry: an integrative approach. CRC Press, 534p.
  5. Fordham, A.W. (1990) Weathering of biotite into dioctahedral clay minerals. Clay Minerals, v.25, p.51-63. https://doi.org/10.1180/claymin.1990.025.1.06
  6. Hwang J.Y., Jang M.I., Kim, J.S., Cho, W.M., Ahn, B.S. and Kang, S.W. (2000) Mineralogy and chemical composition of the residual soils (Hwangto) from South Korea. Journal of the Mineralogical Society of Korea, v.13, n.3, p.147-163 (in Korean with English abstract).
  7. Hwang, H.Z., Kim, J.G. and Yang, J.H. (2006) A Study on the Chemical Properties and Strength Development of Regional Hwangto. Korean Journal of Environment and Ecology, v.6, p.11-18 (in Korean with English abstract).
  8. Hwang, J.Y., Park, H.J., Yang, K.H. and Lee, H.M. (2002) Mineralogy and chemical properties according to particle size separation of Hwangto (reddish residual soil) used in feeding of cattle. Journal of the Mineralogical Society of Korea, v.15, n.1, p.33-43 (in Korean with English abstract).
  9. Jackson, M.L. (1969) Soil chemical analysis: advanced source. University of Wisconsin, Madison, USA, 895p.
  10. Jeong, E.D., Kim, H.S., Park, K.W. and Paek, U.H. (1999) A study on physical properties and adsorption characteristics of heavy metal ions of loess. Journal of the Environmental Sciences, v.8, n.4, p.491-496 (in Korean with English abstract).
  11. Jeong, G.Y. and Kim, S.J. (1990) Iron oxide minerals in the Sancheong kaolin deposits. Journal of the Mineralogical Society of Korea, v.3, n.2, p.79-88 (in Korean with English abstract).
  12. Jung, K.J., Kim, M.K. and Hong, T.K. (2003) Separation and determination of major component (Si, Fe, Al, Mg and Ca) in Yellow ochre, Journal of the Korean Society for Environmental Analysis, v.6, n.2, p.153-155 (in Korean with English abstract).
  13. Kilmer, J. and Alexander, L.T. (1945) Method of making mechanical analysis of soils. Soil Science, v.68, p.15-24.
  14. Lee, B.H. and Jeong, G.Y. (2008) Distribution of clay minerals in soils on the northern drainage basin of the Nakdong river. Journal of the Mineralogical Society of Korea, v.21, n.4, p.349-354 (in Korean with English abstract).
  15. Moore, D.M. and Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, 332p.
  16. Park, B.K., Kim, K.M., Kim, Y.I., Yum, S.Y., Lee, J.W., Hyung, S.W., Hwang, J.H., Kim, Y.M., Kong, M.H., Kim, C.B. and Roh, Y. (2009) Effect of cation and ionic strength on dispersion and coagulation of Hwangto and clay minerals. Journal of the Mineralogical Society of Korea, v.22, n.3, p.249-259 (in Korean with English abstract).
  17. Park, C.W. (2008) Pedological approach to characterize Asian Dust precipitated in Korea and China. Department of Environmental Science and Ecological Engineering, Korea University (Ph.D. Thesis), 42-45p (in Korean with English abstract).
  18. Park, S.B., Kang, H.K., Bang, H.T., Kim, M.J., Choi, H.C., Chae, H.S., Yu, D.J., Suh, O.S. and Na, J.C. (2010) Effect of Dietary Supplementation of Yellow Loess on Performance, Blood Component Profile and Concentration in Feces in Broiler Chickens. Korean Journal of Poultry Science, v.37, p.9-13 (in Korean with English abstract). https://doi.org/10.5536/KJPS.2010.37.1.009
  19. Rhie, J.S. and Choi, K.E. (2005) Coloration of synthetic fiber fabrics with loess (I). Korean Journal of Human Ecology, v.8, n.1, p.19-24 (in Korean with English abstract).
  20. Schwertmann, U. and Taylor, R.M. (1989) Iron oxides. In: Dixon, J.B. and Weed S.B. (eds.), Minerals in soil environments. Soil Science Society of America Book Series, 379-438p.
  21. Seok, J.H. and Jun, S.J. (2009) Control of redtide microbes with hydrogen peroxide and yellow loess. Journal of Korean Society of Water and Wastwater, v.23, n.4, p.491-497 (in Korean with English abstract).
  22. Shin, G.W., Choo, Y.D., Kim, K.Y., Ryu, H.D. and Lee, S.I. (2011) Evaluation of Lanthanum(III)-loess composite as an adsorbent for phosphate removal. Enviromental Engineering Research, v.33, n.2, p.143-148 (in Korean with English abstract). https://doi.org/10.4491/KSEE.2011.33.2.143
  23. Um, M.H., Lim, H.S. and Kim, T.S. (1992) Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea IV. Genesis and Distribution of the Soil Clay Minerals. Korean Journal of Soil Science & Fertilizer, v.25, p.1-7 (in Korean with English abstract).
  24. Vicente, M.A. Razzaghe, M. and Robert, M. (1977) Formation of aluminum hydroxy vermiculite (intergrade) and smectite from mica under acidic conditions. Clay Minerals, v.12, p.101-112. https://doi.org/10.1180/claymin.1977.012.02.01