DOI QR코드

DOI QR Code

Analysis of Indoor Robot Localization Using Ultrasonic Sensors

  • Naveed, Sairah (Department of Control and Instrumentation Engineering, Chosun University) ;
  • Ko, Nak Yong (Department of Control, Instrumentation and Robotic Engineering, Chosun University)
  • Received : 2014.02.21
  • Accepted : 2014.03.19
  • Published : 2014.03.25

Abstract

This paper analyzes the Monte Carlo localization (MCL) method, which estimates the pose of an indoor mobile robot. A mobile robot must know where it is to navigate in an indoor environment. The MCL technique is one of the most influential and popular techniques for estimation of robot position and orientation using a particle filter. For the analysis, we perform experiments in an indoor environment with a differential drive robot and ultrasonic range sensor system. The analysis uses MATLAB for implementation of the MCL and investigates the effects of the control parameters on the MCL performance. The control parameters are the uncertainty of the motion model of the mobile robot and the noise level of the measurement model of the range sensor.

Keywords

References

  1. T. S. Jin, H. S. Kim, and J. W. Kim, "Landmark detection based on sensor fusion for mobile robot navigation in a varying environment," International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 4, pp. 281-286, Dec. 2010. http://dx.doi.org/10.5391/IJFIS.2010.10.4.281
  2. M. Peca, "Ultrasonic localization of mobile robot using active beacons and code correlation," in Research and Education in Robotics-EUROBOT 2009, Communications in Computer and Information Science Vol. 82, A. Gottscheber, D. Obdrlek, and C. Schmidt, Eds. Heidelberg, Berlin: Springer, 2010, pp. 116-130. http://dx.doi.org/10.1007/978-3-642-16370-811
  3. S. C. Kang and T. S. Jin, "Global map building and navigation of mobile robot based on ultrasonic sensor data fusion," International Journal of Fuzzy Logic and Intelligent Systems, vol. 7, no. 3, pp. 198-204, Sep. 2007. https://doi.org/10.5391/IJFIS.2007.7.3.198
  4. L. Moreno, J. Armingol, S. Garrido, A. de la Escalera, and M. Salichs, "A genetic algorithm for mobile robot localization using ultrasonic sensors," Journal of Intelligent and Robotic Systems, vol. 34, no. 2, pp. 135-154, Jun. 2002. http://dx.doi.org/10.1023/A:1015664517164
  5. J. J. Leonard and H. F. Durrant-Whyte, "Mobile robot localization by tracking geometric beacons," IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 376-382, Jun. 1991. http://dx.doi.org/10.1109/70.88147
  6. G. Welch and G. Bishop, "An introduction to the Kalman filter," in Proceedings of SIGGRAPH '01, The 28th International Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, August 12-17.
  7. W. Jeong, Y. J. Kim, J. O. Lee, and M. T. Lim, "Localization of mobile robot using particle filter," in SICE-ICASE International Joint Conference, Busan, Korea, October 18-21, 2006, pp. 3031-3034. http://dx.doi.org/10.1109/SICE.2006.315151
  8. S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, Cambridge, MA: MIT Press, 2005.
  9. S. Thrun, "Particle filters in robotics," in Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, Alberta, Canada, July, 2002, pp. 511-518.
  10. S. Thrun, D. Fox, W. Burgard, and F. Dellaert, "Robust Monte Carlo localization for mobile robots," Artificial Intelligence, vol. 128, no. 1-2, pp. 99-141, May 2001. http://dx.doi.org/10.1016/S0004-3702(01)00069-8
  11. D. Fox, W. Burgard, F. Dellaert, and S. Thrun, "Monte Carlo localization: efficient position estimation for mobile robots," in Proceedings of the Sixteenth National Conference on Artificial Intelligence and Eleventh Conference on Innovative Applications of Artificial Intelligence, Orlando, FL, July 18-22, 1999, pp. 343-349.
  12. F. Dellaert, D. Fox, W. Burgard, and S. Thrun, "Monte Carlo localization for mobile robots," in Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI, May 10-15, 1999, pp. 1322-1328. http://dx.doi.org/10.1109/ROBOT.1999.772544
  13. A. Doucet, S. Godsill, and C. Andrieu, "On sequential Monte Carlo sampling methods for Bayesian filtering," Statistics and Computing, vol. 10, no. 3, pp. 197-208, Jul. 2000. http://dx.doi.org/10.1023/A:1008935410038
  14. N. J. Gordon, D. J. Salmond, and A. F. M. Smith, "Novel approach to nonlinear/non-Gaussian Bayesian state estimation," IEE Proceedings, Part F: Radar and Signal Processing, vol. 140, no. 2, pp. 107-113, Apr. 1993. https://doi.org/10.1049/ip-f-2.1993.0015
  15. G. Kitagawa, "Monte Carlo filter and smoother for Non-Gaussian nonlinear state space models," Journal of Computational and Graphical Statistics, vol. 5, no. 1, pp. 1-25, Mar. 1996. http://dx.doi.org/10.2307/1390750
  16. M. Isard and A. Blake, "CONDENSATION: conditional density propagation for visual tracking," International Journal of Computer Vision, vol. 29, no. 1, pp. 5-28, Aug. 1998. http://dx.doi.org/10.1023/A:1008078328650
  17. K. Kanazawa, D. Koller, and S. Russell, "Stochastic simulation algorithms for dynamic probabilistic networks," in Proceedings of the Eleventh conference on Uncertainty in artificial intelligence, Montreal, Canada, August 18-20, 1995, pp. 346-351.
  18. D. W. Kim, Y. Igor, E. S. Kang, and S. Jung, "Design and control of an omni directional cleaning robot based landmarks," Journal of Korean Institute of Intelligent Systems, vol. 23, no. 2, pp. 100-106, Apr. 2013. http://dx.doi.org/10.5391/JKIIS.2013.23.2.100
  19. S. K. Jeong, T. G. Kim, and N. Y. Ko, "Programming toolkit for localization and simulation of a mobile robot," Journal of Korean Institute of Intelligent Systems, vol. 23, no. 4, pp. 332-340, Aug. 2013. http://dx.doi.org/10.5391/JKIIS.2013.23.4.332
  20. Q. N. Van, H. M. Eum, J. Lee, and C. H. Hyun, "Vision sensor-based driving algorithm for indoor automatic guided vehicle," International Journal of Fuzzy Logic and Intelligent Systems, vol. 13, no. 2, pp. 140-146, Jun. 2013. http://dx.doi.org/10.5391/IJFIS.2013.13.2.140
  21. T. Edlinger and E. Von Puttkamer, "Exploration of an indoor-environment by an autonomous mobile robot," in Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems and Advanced Robotic Systems and the Real World, Munich, Germany, September 12-16, 1994, pp. 1278-1284. http://dx.doi.org/10.1109/IROS.1994.407463
  22. R. Talluri and J. K. Aggarwal, "Position estimation techniques for an autonomous mobile robot: a review," in Handbook of pattern recognition and computer vision, C. H. Chen, L. F. Pau, and P. S. P. Wang, Eds. River Edge, NJ: World Scientific Publishing, 1993, pp. 769-801
  23. C. Durieu, H. Clergeot, and F. Monteil, "Localization of a mobile robot with beacons taking erroneous data into account," in Proceedings of the IEEE International Conference on Robotics and Automation, Scottsdale, AZ, May 14-19, 1989, pp. 1062-1068. http://dx.doi.org/10.1109/ROBOT.1989.100122
  24. M. Betke and L. Gurvits, "Mobile robot localization using landmarks," IEEE Transactions on Robotics and Automation, vol. 13, no. 2, pp. 251-263, Apr. 1997. http://dx.doi.org/10.1109/70.563647