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Abstract

This paper analyzes the Monte Carlo localization (MCL) method, which estimates the pose
of an indoor mobile robot. A mobile robot must know where it is to navigate in an indoor
environment. The MCL technique is one of the most influential and popular techniques for
estimation of robot position and orientation using a particle filter. For the analysis, we perform
experiments in an indoor environment with a differential drive robot and ultrasonic range
sensor system. The analysis uses MATLAB for implementation of the MCL and investigates
the effects of the control parameters on the MCL performance. The control parameters are the
uncertainty of the motion model of the mobile robot and the noise level of the measurement
model of the range sensor.
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1. Introduction

The estimation of position and orientation is vital for navigation of a mobile robot. The
estimation of location, called localization, has been studied extensively. There are many
methods that have been proposed and implemented. These methods include simple dead
reckoning, least squares, and other more complicated filtering approaches.

The most intuitive and trivial method, which is also impractical, is dead reckoning. This
method integrates the velocity over time to determine the change in robot position from its
starting position. Other localization systems use beacons [1–5] placed at known positions in
the environment. The beacons use range data to the robot. The range sensors use ultrasonic or
radio frequency signals to determine the distances between the robot and the beacons. The
least squares method or filtering method uses the range data to estimate the position of the
mobile robot. Uncertainty in robot motion and the noise in the range measurement affect the
performance of the estimation; additionally, some control parameters of the methods should
be adjusted according to the levels of uncertainty and noise.

There have been several filtering approaches for localization. Several of the major ap-
proaches are the Kalman filter (KF), extended Kalman filter (EKF) [6], unscented Kalman
filter (UKF), and particle filter (PF) [7–9]. All of these filters follow the Bayesian filter
approach. The variations in the Kalman filter assume that the uncertainties in robot motion
and measurement are Gaussian.
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The pure KF only uses a linear model of robot motion and
sensor measurement. To handle the nonlinearity in robot motion
and sensor measurement, the EKF approximates the nonlinear-
ity with a first-order linear model. UKF, a recent development
of KF, does not approximate the robot motion and sensor mea-
surement. Instead, it uses a nonlinear model of motion and
measurement as it is. It uses samples called the sigma points
to describe the probabilistic properties of the robot motion and
sensor measurement. UKF also assumes that all the uncertainty
involved in the system is Gaussian.

Though EKF has been used widely and successfully for mo-
bile robot localization, it sometimes provides unacceptable
results because real data can be very complex, involving el-
ements of non-Gaussian uncertainty, high dimensionality, and
nonlinearity. Moreover, EKF requires derivation of a highly
complicated Jacobian for linearization. Therefore, Monte Carlo
methods have been introduced for localization.

Monte Carlo localization (MCL) is based on a particle fil-
ter [10–12]. MCL can solve the global localization and kid-
napped robot problem in a highly robust and efficient way. The
Monte Carlo localization method uses a set of samples, called
the particles, to depict the probabilistic features of the robot
positions. In other words, rather than approximating probabil-
ity distributions in parametric form, as is the case for KFs, it
describes the probability as it is using the particles. MCL has
the great advantage of not being subject to linearity or Gaussian
constraints on the robot motion and sensor measurement.

This paper is concerned with the estimation of robot position
and orientation in an indoor environment. We have used a
sensor system comprised of static ultrasonic beacons and one
mobile receiver installed on the robot. The robot navigates
through predefined path points. The exteroceptive measurement
information is the range data between the robot and the beacons.
In this experiment, we have used a differential drive mobile
robot. The paper contributes to understanding the effect of
control parameters on the localization performance. How the
uncertainty in robot motion and sensor measurement affects the
location estimation has been exploited through experiments.

The remainder of this paper is organized as follows. In
Section 2, MCL and its fundamentals are discussed. Section
3 illustrates details of the experiment and analysis of MCL.
Section 4 covers the discussion of the experiments, and Section
5 concludes the paper.

2. Monte Carlo Localization and its Models

The MCL method iterates sampling and importance resampling
in the frame of the Bayesian filter [13] approach for localization
of a mobile robot. It is alternatively known as the bootstrap
filter [14], the Monte Carlo filter [15], the condensation algo-
rithm [16], or the survival of the fittest algorithm [17]. All of
these methods are generally known as particle filters.

MCL method can approximate almost any probabilistic dis-
tribution of practical importance. It is not bound to a limited
parametric subset of probabilistic distributions as in the case of
an EKF localization method for a Gaussian distribution. Increas-
ing the total number of particles increases the accuracy of the
approximation. However, a large number of particles degrades
the computational efficiency that is needed for real-time appli-
cation of the MCL. The idea of MCL is to represent a belief
about a robot position with a particle set χt, each representing
a hypothesis on the robot pose (x, y, θ).

Monte Carlo localization repeats three steps: 1) application
of a motion model, 2) application of a measurement model, and
3) resampling of particles. These three steps are explained in
Table 1 using pseudocode.

Table 1. Monte Carlo localization (MCL) algorithm

MCL algorithm (χt−1, ut, zt, m)

χt = χt = ∅
for p = 1 to P

µ
[p]
t = Motion model(ut, µ

[p]
t−1)

µ
[p]
t,belief = Measurement model(zt, µpt , m)

µ
[p]
t = Resampling({(µ[p]

t ), µ[p]
t,belief )| p = 1,. . . , P})

end for

return χt

In Table 1, the prediction phase starts from the set of particles
χt−1 and applies the motion model to each particle µ[p]

t−1 in a
particle set χt−1. In a measurement model, the importance
factor, sometimes called the belief µ[p]

t,belief of each particle is
determined. The information in the measurement zt is incorpo-
rated into the particle set χt via the importance factor µ[p]

t,belief .

After the belief µ[p]
t,belief calculation, resampling is performed

on the basis of belief µ[p]
t,belief . Resampling transforms the par-

ticle set into another particle set of the same size, which finally
yields the estimated particle set χt for time t.

The resulting sample set χt−1 usually consists of many dupli-
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cates. It refocuses the particle set into a region of high posterior
probabilities. The particles that were not contained in χt have
lower belief. It should be noted that the resampling process
neither includes the particles in order from the highest belief nor
excludes the particles in order from the lowest belief. Thus, the
set χt = {x[1]t , x

[2]
t , x

[3]
t , , x

[p]
t } consists of P particles, which

represent the probable locations of the robot at time t.

2.1 Motion Model

A motion model is used to predict the pose µ[p]
t of the robot

from the previous pose µ[p]
t−1 using the control command or pro-

prioceptive motion sensing (v,ω). Table 2 shows the proposed
motion model that was used in MCL [6].

Table 2. Motion model

Motion model(χt−1, v, ω, ∆t, motionpara)

for p = 1 to P

v̂ = v + sample(α1v
2+α2ω

2)

ω̂ = ω+sample(α3v
2+α4ω

2)

γ̂ = sample(α5v
2+α6ω

2)

µ
[p]
t,x = µ[p]

t−1,x - v̂
ω̂ sinµ

[p]
t−1,θ + v̂

ω̂ sin(µ
[p]
t−1,θ + ω̂∆t)

µ
[p]
t,y = µ[p]

t−1,y + v̂
ω̂ cosµ

[p]
t−1,θ - v̂

ω̂ cos(µ
[p]
t−1,θ + ω̂∆t)

µ
[p]
t,θ = µ[p]

t−1,θ +ω̂∆t +γ̂∆t

end for

return µ
[p]
t

In Table 2, xpt , ypt , and θpt constitute a particle µ[p]
t that repre-

sents the pose of the robot. ∆t is the algorithm time step, and v
and ω are the translational and rotational velocities measured
by the wheel encoders on the robot. The variable motionpara
consists of α1, α2, α3, α4, α5, and α6, which represent the
motion uncertainty. The function sample generates a random
number from the Gaussian random variable with zero mean and
variance of αiv2+αjω2.

2.2 Measurement Model

In the measurement model, the belief µ[p]
t,belief of the predicted

particles is computed utilizing the received range information
from the beacons. Table 3 shows the proposed measurement
model that we have to implement in MCL. Z

i

t is the distance
between the predicted particle and the beacons.

prob(rit − r̂it, δr) in Table 3 is the Gaussian probability dis-
tribution of the measurement noise in the range information.

Table 3. Measurement model

Measurement model(µ[p]
t , zt, m )

for all particles = (µ[p]
t,x, µ[p]

t,y , µ[p]
t,θ, µ[p]

t,belief )

for all beacons zit = rit do

zit = r̂it =
√

(mi,x − µ[p]
t,x)2 + (mi,y − µ[p]

t,y)2

µpt,belief = µpt,belief × prob(rit − r̂it, δr)

end for

end for

return µt,belief

The measurement noise can be caused by unexpected objects,
crosstalk between different signals, and specular reflection of
the signals.

2.3 Resampling

Finally, all particles are resampled, i.e., a new set of particles
are drawn from the current set χt on the basis of the belief
µpt,belief . We use systematic resampling, which is also known
as stochastic universal resampling because it is fast and simple
to implement.

3. Experiment and Analysis

The experiments are conducted in a classroom with chairs and
tables on which computers and monitors are located. The four
ultrasonic beacons are installed on the ceiling.

Figures 1, 2 shows the experimental setup which indicates
the trajectory of the robot motion and the location of ultrasonic
beacons. The positions of the beacons and way points are
provided in Tables 4 and 5, respectively.

Figure 1. Capstone design laboratory (environment for robot naviga-
tion experiment).
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Figure 2. Experimental setup.

We use the MRP-NRLAB 02 differential drive robot (see Fig-
ure 3) manufactured by RED ONE technologies and the USAT
A105 ultrasonic sensor system (see Figure 4) from the company
Korea LPS. The work area for the experiment is 14.5m×7.25m.
The receiver of the sensor system is mounted on the robot, and
beacons are attached on the ceiling of the room.

Table 4. Locations of the beacons
Beacon x position (m) y position (m)
1 5.7 0.6
2 8.15 0.6
3 10.6 0.6
4 13.05 0.6

Table 5. Locations of the way points

Way point x position (m) y position (m)
1 5.3 1.2
2 12.95 1.2
3 12.95 3.9
4 1.7 3.9
5 1.7 6.15

6 1.7 6.15

The robot is controlled by a joystick and uses the wheel
encoder data to calculate the translational velocity v and rota-
tional velocity ω. The ranges between the robot and beacons
are measured by the ultrasonic sensor system to correct the
predicted robot location. The initial pose (xo, yo, θo) of the
robot is (5.3m, 1.2m, 0.00rad). The robot navigates with a
translational velocity of v = 0.3m/sec and rotational velocity
ω = 0.1rad/sec. The MCL is implemented using MATLAB
with 300 particles. Table 6 lists the values of the control param-
eter that are used to investigate the performance of MCL.

Figure 3. Differential drive robot MRP-NRLAB02.

Figure 4. Ultrasonic sensor system USAT A105.

During the experiment, the ultrasonic range measurement
system often fails in detecting some of the ranges. Because of
the failure, ambiguity and large estimation error are observed
in the path segments from 3 to 4, 4 to 5, and 5 to 6.

Figure 5 shows the plots of the estimated trajectories by col-
ored lines according to the values of the control parameters, as
shown in Table 6. The asterisks represent the positions of the
beacons. Figures 6 and 7 illustrate the distance error and orien-
tation error between the estimated and real robot trajectories.
Tables 7 and 8 list the mean and standard deviation of the dis-
tance error and orientation error of the estimation, respectively.
From the experimental results, the estimation error of the robot
is observed to decrease when the appropriate control parameter
values are used.

4. Discussion

A variety of techniques and suggestions have been proposed
for mobile robot localization [18–24]. It is evident that a com-
parison of different techniques was difficult because of a lack
of commonly accepted test standards and procedures. We have
developed our own experimental environment using four ul-
trasonic beacons and six way points for robot navigation. An
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Table 6. Control parameter values

Motion uncertainty Case (i) Case (ii) Case (iii)
α1 0.6 0.7 0.8
α2 0.1 0.2 0.3
α3 0.6 0.7 0.8
α4 0.2 0.3 0.4
α5 0.13 0.14 0.15
α6 0.2 0.3 0.4
Measurement noise Case (i) Case (ii) Case (iii)
δr 0.15 0.25 0.35

Table 7. Mean of distance error and orientation error
Case Mean of distance error Mean of orientation error
i 0.4173 0.1416
ii 0.4046 0.1008
iii 0.2210 0.0278

Table 8. Standard deviation (SD) of distance error and orientation
error

Case SD of distance error SD orientation error
i 0.4761 0.1102
ii 0.3331 0.0868
iii 0.1760 0.0269

analysis of MCL was performed under three different cases, as
provided in Table 6. Each case in Table 6 is categorized accord-
ing to the low, medium, and high values of motion uncertainty
and measurement noise. The investigation of MCL analysis
was based on the following:
1) plotting the trajectory of the estimated position against the
real robot trajectory,
2) calculating and plotting the distance error and orientation
error between the real robot position and the estimated position,
and
3) evaluation of mean and standard deviation of the distance
error and orientation error.

Large estimation error is observed in (a) and (b) in Figure 5,
which corresponds to cases (i) and (ii), respectively. Figure 5c,
which corresponds to case (iii), shows the least estimation error.
The results also suggest that the motion error and measurement
noise of the experiment are relatively high.

Figures 7 and 8 show the distance error and orientation error
for the experiments. The mean and standard deviation of the
errors are listed in Tables 7 and 8, respectively. The results
are shown in Figures 5 through 7, and Tables 7 and 8 indicate
that the proper selection of control parameters is crucial for
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s 

(a) The red line shows the estimated trajectory according to the
control parameter values of case (i) in Table 6.
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(b) The green line shows the estimated trajectory according to
the control parameter values of case (ii) in Table 6.
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s 

(c) The black line shows the estimated trajectory according to
the control parameter values of case (iii) in Table 6.

Figure 5. Comparison of estimated trajectories using different param-
eter values.
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(a) Distance error plot between particles and real robot trajectory
related to case (i) in Table 6.
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(b) Distance error plot between particles and real robot trajectory
related to case (ii) in Table 6.
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(c) Distance error plot between particles and real robot trajectory
related to case (iii) in Table 6.

Figure 6. Distance error between estimated and actual robot trajecto-
ries.

the use of MCL. MCL fails if the values of the control parame-
ters assume that the uncertainty of robot motion is lower than
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(a) Orientation error plot between estimated and real robot trajec-
tory related to case (i) in Table 6.
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(b) Orientation error plot between estimated and real robot tra-
jectory related to case (ii) in Table 6.

Sampling time index 

O
ri
e
n
ta

ti
o
n
 e

rr
o
r 
(r
a
d
ia

n
) 

(c) Orientation error plot between estimated and real robot trajec-
tory related to case (iii) in Table 6.

Figure 7. Orientation error between estimated and actual robot orien-
tation.

the actual uncertainty. Likewise, assuming that the measure-
ment uncertainty is lower than that of the actual measurement
deteriorates the estimation performance.
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5. Conclusion

This paper shows results of MCL used for localization of a
mobile robot in an indoor environment. The experiment uses
a differential drive robot, which uses wheel encoder data and
range data from four fixed beacons.

The experiments compare three different cases, which rep-
resent localization under different control parameter values.
The control parameters adjust the uncertainty of robot motion
and sensor measurement noise. From the comparison, it is
concluded that assuming that the motion uncertainty and mea-
surement noise are lower than the actual values causes poor
estimation performance. This is the case for KF approaches,
where the mismatch in the process error level and measurement
error level causes poor estimation performance.
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