DOI QR코드

DOI QR Code

cDNA microarray analysis of viral hemorrhagic septicemia infected olive flounder, Paralichthys olivaceus: immune gene expression at different water temperature

바이러스성 출혈성 패혈증에 감염된 넙치의 cDNA microarray 분석 : 수온에 따른 면역 유전자 발현의 차이

  • Kim, Jin-Ung (Yeosu center, Ocean & Fishery Science Institute) ;
  • Jung, Sung-Ju (Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University)
  • 김진웅 (전라남도 해양수산과학원 여수센터) ;
  • 정성주 (전남대학교 수산해양대학 수산생명의학과)
  • Received : 2013.08.06
  • Accepted : 2014.04.07
  • Published : 2014.04.30

Abstract

The olive flounder, Paralichthys olivaceus is susceptible to viral hemorrhagic septicaemia virus (VHSV) at $15^{\circ}C$ but no mortality at $20^{\circ}C$ even though the virus can grow well in vitro at $20^{\circ}C$. Thus, we designed an experiment to know immune response of olive flounder against VHSV when the host reared at $15^{\circ}C$ or $20^{\circ}C$. cDNA microarray analysis was performed to compare the gene expression patterns of the kidney cells between the host reared at $15^{\circ}C$ or $20^{\circ}C$. The expression of MHC class I, IL-8, myeloperoxidae and endonuclease G-like having function for the antigen presentation and chemokine-factor were up-regulted both the $15^{\circ}C$ and $20^{\circ}C$ during VHSV infection. MHC class II gene existing on antigen-presenting cells and B cell lymphocytes, immunoglobulin (Ig) genes and phagocytosis related genes were down-regulated at $15^{\circ}C$ but highly expressed at $20^{\circ}C$. It can be thought that innate immune related antigen presentation by MHC class I and phagocytosis reaction against VHSV are efficiently occur both the temperature but macrophage or B cell related antigen presentation via MHC class II fails to induce downstream immune reactions (adaptive immunity) to make antibody, and it can be one of the reason that causes high mortality only at $15^{\circ}C$.

저수온기만 넙치에 대량 폐사를 일으키는 바이러스성 출혈성 패혈증을 폐사가 발생하는 $15^{\circ}C$, 폐사가 발생하지 않는 $20^{\circ}C$에서 인공감염시켜 넙치의 면역 유전자 발현 profile을 cDNA microarray 분석하였으며, 특히 저수온기에 폐사가 나타나는 원인을 면역 유전자 발현과 관련시켜 알아보고자 하였다. $15^{\circ}C$, $20^{\circ}C$의 감염 세포구에 공통으로 발현되는 유전자는 MHC class I, IL-8, myeloperoxidase 및 endonuclease G-like 유전자로 모든 세포표면에 존재하여 항원을 제시하거나 호중구 주화성을 자극하는 유전자들이었다. 항원 가공 및 제시, 항체 생성에 관여하는 MHC class II, immunoglobulin (Ig)과 retinoblastoma 등의 유전자는 $20^{\circ}C$에서는 발현이 증가하였으나 $15^{\circ}C$에서는 발현이 감소되었다. 이로부터 폐사가 발생하지 않는 $20^{\circ}C$는 바이러스 감염초기의 항원 제시, MHC class I과 II에 의한 항원제시, apoptosis 및 이후의 항체 생산이 정상적으로 이루어져 폐사가 발생하지 않는 것으로 생각되었다. 그러나 폐사가 발생하는 $15^{\circ}C$에서는 MHC class I매개의 항원 제시와 탐식 작용등의 선천 면역은 이루어지나 macrophage에 의한 MHC class II매개의 항원 제시와 apoptosis저하, 항체 생산 관련 유전자의 발현저하가 관찰되어 초기 macrophage에 의한 항원제시의 실패로 적응 면역이 제대로 활성화되지 않아 폐사가 발생한 것으로 사료된다.

Keywords

References

  1. Avunje, S., Kim, W.S., Park, C.S., Oh, M,J, and Jung, S,J.: Toll-like receptors and interferon associated immune factors in viral haemorrhagic septicaemia virus- infected olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol., 31: 407-414, 2011. https://doi.org/10.1016/j.fsi.2011.06.009
  2. Avunje, S., Kim, W.S., Oh, M,J,, Choi, I. and Jung, S.J.: Temperature-dependent viral replication and antiviral apoptotic response in viral haemorrhagic septicaemia virus (VHSV)-infected olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol., 32: 1162-1170, 2012. https://doi.org/10.1016/j.fsi.2012.03.025
  3. Avunje, S., Oh, M.J. and Jung, S.J.: Impaired TLR2 and TLR7 response in olive flounder infected with viral haemorrhagic septicaemia virus at host susceptible $15^{\circ}C$ but high at non-susceptible $20^{\circ}C$. Fish Shellfish Immunol., 34: 1236-1243, 2013. https://doi.org/10.1016/j.fsi.2013.02.012
  4. Brudeseth, B.E., Castric, J. and Evensen, O.: Studies on pathogenesis following single and double infection with viral hemorrhagic septicemia virus and infectious hematopoietic necrosis virus in rainbow trout (Oncorhynchus mykiss). Vet Pathol 39: 180-189, 2002. https://doi.org/10.1354/vp.39-2-180
  5. Byon, J.Y., Ohira, T., Hirono, I. and Aoki, T.:Use of a cDNA microarray to study immunity against viral hemorrhagic septicemia (VHS) in Japanese flounder (Paralichthys olivaceus) following DNA vaccination. Fish Shellfish Immunol., 18: 135-147, 2005. https://doi.org/10.1016/j.fsi.2004.06.008
  6. Dang, T.L., Yasuike, M., Hirono, I., Kondo, H. and Aoki, T.: Transcriptional profile of red seabream iridovirus in a fish model as revealed by viral DNA microarrays. Virus Genes, 35: 449-461, 2007. https://doi.org/10.1007/s11262-007-0090-3
  7. Dipanjan, C. and Lieberman J.: Death by a thousand cuts: granzyme pathways of programmed cell death. Annu Rev Immunol., 26: 389-420, 2008. https://doi.org/10.1146/annurev.immunol.26.021607.090404
  8. Friend, S.H., Bernards, R., Rogeij, S., Weinberg, R.A., Rapaport, J.M., Alberts, D. M. and Dryja R.P.: A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature, 323: 643-646, 1986. https://doi.org/10.1038/323643a0
  9. Hanington, P.C., Barreda, D.R. and Belosevic M.A.: novel hematopoietic granulin induces proliferation of goldfish (Carassius auratus L.) macrophages. J Biol Chem., 281: 9963-9970, 2006. https://doi.org/10.1074/jbc.M600631200
  10. Hass-Kogan, D.A., Kogan, S. C., Levi, D., Dazin, P., Ang, A.T., Fung, Y.K. and Israel, M.A.: Inhibition of apoptosis by the retinoblastoma gene product. J EMBO., 14: 461-472, 1995.
  11. Heinecke, J.W., Li, W., Daenke H.L. 3rd and Goldstein J.A.: Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase hydrogen peroxide system of human neutrophils and macrophage. J Biol Chem., 268: 4069-4077, 1993.
  12. Hung, C.H., Huang, H.R., Huang, C.J., Huang, F.L. and Chang G.D.: Purification and cloning of carp nephrosin, a secreted zinc endopeptidase of the astacin family. J Biol Chem., 272: 13772-13778, 1997. https://doi.org/10.1074/jbc.272.21.13772
  13. Hwang, E.S., Park C.G. and Cha C.Y.: Immune responses to viral infection. Immune Network, 4: 73-80, 2004. https://doi.org/10.4110/in.2004.4.2.73
  14. Isshiki, I., Nishizawa, T., Kobayashi, T., Nagano, T. and Miyazaki T.: An outbreak of VHSV (viral haemorrhagic septicemia) infection in farmed Japanese flounder Paralichthys olivaceus in Japan. Dis Aquat Org., 47: 87-99, 2001. https://doi.org/10.3354/dao047087
  15. Kim, S.M., Lee, J.I., Hong, M.J., Park, H.S. and Park S.I.: Genetic relationship of the VHSV (viral hemorrhagic septicemia virus) isolated from cultured olive flounder, Paralichthys olivaceus in Korea. J Fish Pathol., 16: 1-12, 2003.
  16. Levine, T.P. and Chain, B.M.: The cell biology of antigen processing. Crit Rev Biochem Mol Biol., 26: 439-473, 1991. https://doi.org/10.3109/10409239109086790
  17. Miller, T.A., Rapp, J., Wastlhuber, U., Hoffmann, R.W. and Enzmann, P.J. Rapid and sensitive reverse transcriptase-polymerase chain reaction based detection and differential diagnosis of fish pathogenic rhabdoviruses in organ samples and cultured cells. Dis Aquat Org., 34: 13-20, 1998. https://doi.org/10.3354/dao034013
  18. Mortensen, H.F., Heuer, O.E., Lorenzen, N., Otte, L. and Olesen, N.J.: Isolation of viral haemorrhagic septicaemia virus (VHSV) from wild marine fish species in the Baltic Sea, Kattegat, Skagerrak and the North Sea. Virus Res., 63: 95-106, 1999. https://doi.org/10.1016/S0168-1702(99)00062-3
  19. Praveen, K., Evans, D.L. and Jaso-Friedmann L.: Evidence for the existence of granzyme-like serine proteinases in teleost cytotoxic cell. J Mol Evol., 58: 449-459, 2004. https://doi.org/10.1007/s00239-003-2566-7
  20. Roitt, I.M, Brostoff, J. and Male D.K. Immunology. London, Mosby., 225. 1998
  21. Sano, M., Ito, T., Matsuyama, T., Nakayasu, C. and Kurita J.: Effect of water temperature shifting on mortality of Japanese flounder Paralichthys olivaceus experimentally infected with viral hemorrhagic septicemia virus. Aquaculture, 286: 254-258, 2009. https://doi.org/10.1016/j.aquaculture.2008.09.031
  22. Schreiber, A., Luft, F.C. and Kettritz R.: Membrane proteinase 3 expression and ANCA-induced neutrophil activation. Kidney Int., 65: 2172-2183, 2004. https://doi.org/10.1111/j.1523-1755.2004.00640.x
  23. Smail, D.A. Viral haemorrhagic septicaemia. In: Fish disease and disorders, vol. 3, Viral, bacterial and fungal infections. P.T.K. Woo, D.W. Bruno (ed), CABI Publishing, New York, 123-147,1999.
  24. Takano, R., Nishizawa, T., Arimoto M. and Muroga K. Isolation of viral haemorragic septicemia (VHSV) from wild Japanese flounder, Paralichthys olivaceus. Bull Eur Assoc Fish Pathol., 20: 186-193, 2000.
  25. Thompson, C.B.: Apoptosis in the pathogenesis and treatment of disease. Science, 267: 1456-1462, 1995. https://doi.org/10.1126/science.7878464
  26. Uehara, A., Muramoto, K. Takada, H. and Sugawara, S.: Neutrophil serine proteinases activate human nonepithelial cells to produce inflammatory cytokines through protease-activated receptor 2. J Immunol., 70: 5690-5696, 2003.

Cited by

  1. Differentially expressed genes after viral haemorrhagic septicaemia virus infection in olive flounder ( Paralichthys olivaceus ) vol.193, 2016, https://doi.org/10.1016/j.vetmic.2016.05.024
  2. Gene expression profiles alteration after infection of virus, bacteria, and parasite in the Olive flounder ( Paralichthys olivaceus ) vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-36342-y
  3. Infectious hematopoietic necrosis virus truncated G protein effect on survival, immune response, and disease resistance in rainbow trout vol.139, pp.None, 2014, https://doi.org/10.3354/dao03463
  4. Field experiment on effect of butaphosphan and cyanocobalamin complex on the immunity and stress of olive flounder at low temperature vol.24, pp.4, 2014, https://doi.org/10.47853/fas.2021.e15