DOI QR코드

DOI QR Code

횡 보강된 프리캐스트와 현장타설 콘크리트 합성보의 전단강도

Shear Strength of PC-CIP Composite Beams with Shear Reinforcement

  • Kim, Chul-Goo (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Park, Hong-Gun (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Hong, Geon-Ho (Dept. of Architectural Engineering, Hoseo University) ;
  • Kang, Su-Min (Dept. of Architectural Engineering, Chugbuk National University)
  • 투고 : 2013.11.18
  • 심사 : 2014.02.04
  • 발행 : 2014.04.30

초록

최근 들어, 압축강도가 서로 다른 프리캐스트 콘크리트와 현장타설 콘크리트의 합성 부재의 사용이 증가하고 있지만 현행 콘크리트 구조기준에는 서로 다른 강도로 복합화된 부재의 수직 전단강도에 대해 검증되지 않은 다양한 계산법들이 제시되어있다. 그래서 이번 연구에서는 기존에 연구되었던 무횡보강 합성보와 같은 철근비와 전단경간비를 갖는 횡보강 합성보의 전단강도 실험을 통해 횡보강 합성 부재의 전단강도에 대해 알아보았다. 변수로는 단면형상, 전단철근 간격, 그리고 전단경간비(a/d)를 고려하였다. 실험 결과와 현행 기준에서 제시하는 합성 부재의 수직전단강도 기준식을 비교하였다. 실험 결과를 분석해보면 횡보강 부재의 수직전단강도는 유효콘크리트 강도와 압축대 콘크리트 강도에 영향을 받았고 휨 균열 강성에 비례하였고 압축대 콘크리트 강도에 따라 전단철근의 기여도의 차이를 보였다.

Currently, in the precast concrete construction, Precast Concrete (PC) and Cast-In-Place (CIP) concrete with different concrete strengths are frequently used. However, current design codes do not specifically provide shear design methods for PC-CIP hybrid members using dual concrete strengths. In the present study, simply supported composite beams with shear reinforcement were tested. The test variables were the area ratio of the two concretes, spacing of shear reinforcement, and shear span-to-depth ratio. The shear strengths of the test specimens were evaluated by current design codes on the basis of the test results. The results showed that the shear strength of the composite beams was affected by the concrete strength of the compressive zone and also proportional to the flexural rigidity of un-cracked sections. Furthermore, the contribution of shear reinforcements varied according to the concrete strength of the compressive zone.

키워드

참고문헌

  1. Korea Concrete Institute, Concrete Design Code and Commentary, Kimoondang Publishing Company, Seoul, Korea, 2012, pp. 164-165, 367-369.
  2. ACI Committee 318, Building Code Requirements for Structural Concrete(ACI 318-11), American Concrete Institute, Farmington Hills, MI, 2011, pp. 164-174, pp. 283-285.
  3. Saemann, J. C. and Washa, G. W., "Horizontal Shear Connections between Precast Beams and Cast-In-Place Slabs," ACI Structural Journal, Vol. 61, No. 11, 1964, pp. 1383-1409.
  4. Loov, R. E. and Patnaik, A. K., "Horizontal Shear Strength of Composite Concrete Beams with a Rough Interface," PCI Journal, Vol. 38, No.1, 1994, pp. 48-69.
  5. Kahn, L. F. and Slapkus, A., "Interface Shear in High Strength Composite T-Beams," PCI Journal, Vol. 49, No. 4, 2004, pp. 102-110. https://doi.org/10.15554/pcij.07012004.102.110
  6. Halicka, A., "Influence New-To-Old Concrete Interface Qualities on the Behavior of Support Zones of Composite Concrete Beams," Construction and Building Materials, Vol. 25, No. 10, 2011, pp. 4072-4078. (doi: http://dx.doi.org/10.1016/j.conbuildmat.2011.04.045)
  7. Kim, C. G., Park, H. G., Hong, G. H., and Kang, S. M., "Shear Strength of Hybrid Beams Combining Precast Concrete and Cast-In-Place Concrete," Journal of the Korea Concrete Institute, Vol. 25, No. 2, 2013, pp. 175-185. (doi: http://dx.doi.org/10.4334/JKCI.2013.25.2.175)

피인용 문헌

  1. Shear Strength of Prestressed PC-CIP Composite Beams with Vertical Shear Reinforcement vol.27, pp.4, 2015, https://doi.org/10.4334/JKCI.2015.27.4.399
  2. Shear Strength of Steel Fiber Concrete - Plain Concrete Composite Beams vol.27, pp.5, 2015, https://doi.org/10.4334/JKCI.2015.27.5.501
  3. Evaluation of Horizontal Shear Strength for Concrete Composite Members vol.28, pp.4, 2016, https://doi.org/10.4334/JKCI.2016.28.4.407
  4. Shear Strength of Prestressed PC-CIP Composite Beams without Vertical Shear Reinforcements vol.26, pp.4, 2014, https://doi.org/10.4334/JKCI.2014.26.4.533