DOI QR코드

DOI QR Code

고강도 비틀림보강철근을 사용한 철근콘크리트 보의 파괴모드

Failure Modes of RC Beams with High Strength Reinforcement

  • 윤석광 (성균관대학교 건설환경시스템공학부) ;
  • 이수찬 (성균관대학교 초고층장대교량학과) ;
  • 이도형 (배제대학교 건축공학과) ;
  • 이정윤 (성균관대학교 건축토목공학부)
  • Yoon, Seok-Kwang (Dept. of Civil, Architectural and Environmental System Engineering, Sungkyunkwan University) ;
  • Lee, Su-Chan (Dept. of Mega Building and Bridges, Sungkyunkwan University) ;
  • Lee, Do-Hyeong (Civil, Environmental and Railroad Engineering, Paichai University) ;
  • Lee, Jung-Yoon (School of Civil and Architectural Engineering, Sungkyunkwan University)
  • 투고 : 2013.09.06
  • 심사 : 2013.12.20
  • 발행 : 2014.04.30

초록

콘크리트의 압축파괴에 의한 취성적인 비틀림파괴와 사인장균열의 폭을 제한하기 위하여 콘크리트구조기준은 비틀림보강철근의 항복강도를 제한하고 있다. 2012년에 콘크리트구조기준에서는 비틀림보강철근의 항복강도를 400 MPa에서 500 MPa로 상향하였다. 그 이유는 500 MPa의 비틀림보강철근을 사용한 비틀림부재의 경우에도 전단파괴하는 부재와 유사하게 기준에서 요구하는 비틀림파괴모드, 사용성, 경제성을 만족시킬 수 있을 것으로 판단하였기 때문이다. 그러나 현재 고강도 비틀림보강철근을 사용한 비틀림부재에 대한 연구는 전단부재에 대한 연구에 비하여 부족한 실정이다. 이 연구에서는 340 MPa, 480 MPa, 667 MPa의 비틀림보강철근을 사용한 철근콘크리트 보의 비틀림거동을 실험적으로 평가하였다. 실험에 의하면 비틀림보강철근의 파괴모드는 비틀림보강철근의 항복강도와 콘크리트의 압축강도에 의하여 영향을 받았다. 비틀림보강철근의 항복강도가 400 MPa이하인 경우에는 콘크리트의 압축강도와 무관하게 한 곳 이상에서 비틀림보강철근이 항복강도에 도달하여 비틀림인장파괴하였지만, 항복강도가 480 MPa 이상인 경우에는 비틀림보강철근이 항복하지 않는 경우가 발생하여 이에 대한 추가적인 연구가 필요할 것으로 판단된다.

To avoid abrupt torsional failure due to concrete crushing before yielding of torsional reinforcement and control the diagonal crack width, design codes specify the limitations on the yield strength of torsional reinforcement of RC members. In 2012, Korean Concrete Institute design code increased the allowable maximum yield strength of torsional reinforcement from 400 MPa to 500 MPa based on the analytical and experimental research results. Although there are many studies regarding the shear behavior of RC members with high strength stirrups, limited studies of the RC members regarding the yield strength of torsional reinforcement are available. In this study, twelve RC beams having different yield strength of torsional reinforcement and compressive strength of concrete were tested. The experimental test results indicated that the torsional failure modes of RC beams were influenced by the yield strength of torsional reinforcement and the compressive strength of concrete. The test beams with normal strength torsional reinforcement showed torsional tension failure, while the test beams with high strength torsional reinforcement greater than 480 MPa showed torsional compression failure. Therefore, additional analytical and experimental works on the RC members subjected to torsion, especially the beams with high strength torsional reinforcement, are needed to find an allowable maximum yield strength of torsional reinforcement.

키워드

참고문헌

  1. Korea Concrete Institute, Concrete Design Code, Kimoondang Publishing Company, Seoul, 2012, 342 pp.
  2. American Concrete Institute, Building Code Requirements for Structural Concrete (ACI 318M-11) and Commentary, ACI, 2011, 503 pp.
  3. Lee, J. Y. and Kim, S. W., "Torsional Strength of RC Beams Considering Tension Stiffening Effect," Journal of Structural Engineering, Vol. 136, No. 11, 2010, pp. 1367-1378. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000237
  4. Lee, J. Y., Choi, I. J., and Kim, S. W., "Shear Begavior of Reinforced Concrete Beams with High-Strength Stirrups," ACI Structural Journal, Vol. 108, No. 5, 2011, pp. 620-629.
  5. Maekawa, K., Pimanmas, A., and Okamura, H., Nonlinear Mechanics of Reinforced Concrete, E&FN Spon, London, 2002, pp. 565-650.
  6. Fang, I. K. and Shiau, J. K., "Torsional Behavior of Normal and High-Strength Concrete Beams," ACI Structural Journal, Vol. 101, No. 3, 2004, pp. 304-313.
  7. McMullen, A. E. and Rangan, V., "Pure Torsion in Rectangular Sections a Re-examination," ACI Structural Journal, Vol. 75, No. 10, 1988, pp. 511-519.
  8. Rasmussen, L. J. and Baker, G., "Torsion in Reinforced Normal and High-Strength Concrete Beams-Part 1: Experimental Test Series," ACI Structural Journal, Vol. 92, No. 1, 1995, pp. 56-62.
  9. Rahal, K. N. and Collins, M. P., "Analysis of Sections Subjected to Combined Shear and Torsion-A Theoretical Model," ACI Structural Journal, Vol. 92, No. 4, 1995, pp. 924, pp. 459-469.
  10. Rahal, K. N. and Collins, M. P., "Simple Model for Predicting Torsional Strength of Reinforced and Prestressed Concrete Sections," ACI Structural Journal, Vol. 93, No. 6, 1996, pp. 936, pp. 658-666.
  11. Comete European de Normalisation (CEN), Eurocode 2: Design of Concrete Structures. Part 1- General Rules and Rules for Buildings, prEN 1992-1, 2002, 211 pp.
  12. Japan Society of Civil Engineering, Standard Specifications for Concrete Structures, Japan, 2002, 257 pp.
  13. CSA Committee A23.3-04, Design of Concrete Structures for Buildings CAV3-A23.3-04, Canadian Standards Association, Canada, 2004, 232 pp.

피인용 문헌

  1. Maximum Torsional Reinforcement of Reinforced Concrete Beams Subjected to Pure Torsion vol.115, pp.3, 2018, https://doi.org/10.14359/51701108