DOI QR코드

DOI QR Code

Participation of Central $P2X_7$ Receptors in CFA-induced Inflammatory Pain in the Orofacial Area of Rats

  • Yang, Kui-Ye (Department of Oral physiology, School of Dentistry, Kyungpook National University) ;
  • Kim, Myung-Dong (Department of Oral physiology, School of Dentistry, Kyungpook National University) ;
  • Ju, Jin-Sook (Department of Oral physiology, School of Dentistry, Kyungpook National University) ;
  • Kim, Min-Ji (Department of Oral physiology, School of Dentistry, Kyungpook National University) ;
  • Ahn, Dong-Kuk (Department of Oral physiology, School of Dentistry, Kyungpook National University)
  • Received : 2014.02.28
  • Accepted : 2014.03.10
  • Published : 2014.03.31

Abstract

We investigated the role of central P2X receptors in inflammatory pain transmission in the orofacial area in rats. Experiments were carried out using male Sprague-Dawley rats weighing 230-280g. Complete Freund's adjuvant (CFA, $40{\mu}L$) was applied subcutaneously to the vibrissa pad to produce inflammatory pain. The intracisternal administration of iso-PPADS tetrasodium salt, a non-selective P2X receptor antagonist, A317491 sodium salt hydrate, a $P2X_{2/3}$ receptor antagonist, 5-BDBD, a $P2X_4$ receptor antagonist, or A438079 hydrochloride, a $P2X_7$ receptor antagonist, was performed 5 days after CFA injection. Subcutaneous injections of CFA produced increases in thermal hypersensitivity. Intracisternal injections of iso-PPADS ($25{\mu}g$) or A438079 (25 or $50{\mu}g$) produced significant anti-hyperalgesic effects against thermal stimuli compared to the vehicle group. A317491 or 5-BDBD did not affect the head withdrawal latency times in rats showing an inflammatory response. Subcutaneous injections of CFA resulted in the up-regulation of OX-42, a microglia marker, and GFAP, an astrocyte marker, in the medullary dorsal horn. The intracisternal administration of A438079 reduced the numbers of activated microglia and astrocytes in the medullary dorsal horn. These results suggest that a blockade of the central $P2X_7$ receptor produces antinociceptive effects, mediated by inhibition of glial cell function in the medullary dorsal horn. These data also indicate that central $P2X_7$ receptors are potential targets for future therapeutic approaches to inflammatory pain in the orofacial area.

이상의 실험결과들을 요약하면, CFA를 안면영역 피하로 주입하여 발생한 염증성 통증 행위반응은 P2X 수용체의 억제제의 투여로 감소할 수 있었다. 특히 $P2X_7$ 수용체 억제제를 투여하면 진통작용 뿐 아니라 활성화된 신경아교세포 발현을 억제하였다. 이러한 실험 결과는 $P2X_7$ 수용체가 신경아교세포에 영향을 미쳐 안면에서 발생하는 만성 염증성 통증의 발생과 유지에 관여하고 있다는 것을 보여준다. 따라서 중추신경계의 신경아교세포를 조절할 수 있는 중추성 $P2X_7$ 수용체 작용기전은 임상에서 만성 염증성 통증을 보다 효과적으로 치료할 수 있는 새로운 방법을 제시해 줄 수 있다고 생각된다.

Keywords

References

  1. Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev. 2007;87:659-797. https://doi.org/10.1152/physrev.00043.2006
  2. Collier HO, James, GW, Schneider C. Antagonism by aspirin and fenamates of bronchoconstriction and nociception induced by adenosine-5'-triphosphate. Nature 1966;212:411-412. https://doi.org/10.1038/212411a0
  3. Hamilton SG, Warburton J, Bhattacharjee A, Ward J, McMahon SB. ATP in human skin elicits a dose-related pain response which is potentiated under conditions of hyperalgesia. Brain 2000;123:1238-1246. https://doi.org/10.1093/brain/123.6.1238
  4. Abbracchio MP, Burnstock G. Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther. 1994;64:445-475. https://doi.org/10.1016/0163-7258(94)00048-4
  5. Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev. 1998;50:413-492.
  6. Chizh BA, Illes P. P2X receptors and nociception. Pharmacol Rev. 2001;53:553-568.
  7. Dunn PM, Zhong Y, Burnstock G. P2X receptors in peripheral neurons. Prog Neurobiol. 2001;65:107-134. https://doi.org/10.1016/S0301-0082(01)00005-3
  8. Inoue K. P2 receptors and chronic pain. Purinergic Signal 2007;3:135-144. https://doi.org/10.1007/s11302-006-9045-8
  9. Bardoni R, Goldstein PA, Lee CJ, Gu JG, MacDermott A. ATP P2X receptors mediate fast synaptic transmission in the dorsal horn of the rat spinal cord. J Neurosci. 1997;17:5297-5304.
  10. Dubyak GR, el-Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol. 1993;265:C577-606. https://doi.org/10.1152/ajpcell.1993.265.3.C577
  11. Khakh BS, Henderson G. ATP receptor-mediated enhancement of fast excitatory neurotransmitter release in the brain. Mol Pharmacol. 1998;54:372-378. https://doi.org/10.1124/mol.54.2.372
  12. Chen M, Gu JG. A P2X receptor-mediated nociceptive afferent pathsay to lamina I of the spinal cord. Mol Pain 2005;1:4. https://doi.org/10.1186/1744-8069-1-4
  13. Le KT, Villeneuve P, Ramjaun AR, McPherson PS, Beaudet A, Seguela P. Sensory presynaptic and widespread somatodendritic immunolocalization of central ionotropic P2X ATP receptors. Neuroscience 1998;83:177-190. https://doi.org/10.1016/S0306-4522(97)00365-5
  14. North RA. Molecular physiology of P2X receptors. Physiol Rev. 2002;82:1013-1067. https://doi.org/10.1152/physrev.00015.2002
  15. Burnstock G. Purinergic receptors and pain. Curr Pharm Des. 2009;1717-1735.
  16. Fukuhara N, Imai Y, Sakakibara A, Morita K, Kitayama S, Tanne K, Dohi T. Regulation of development of allodynia by intrathecally administered P2 purinoceptor agonists and antagonists in mice. Neurosci Lett. 2000;292:25-28. https://doi.org/10.1016/S0304-3940(00)01427-0
  17. Tsuda M, Ueno S, Inoue K. In vivo pathway of thermal hyperalgesia by intrathecal administration of alpha, beta-methylene ATP in mouse spinal cord: involvement of the glutamate-NMDA receptor system. Br J Pharmacol. 1999;127:449-456. https://doi.org/10.1038/sj.bjp.0702582
  18. Tsuda M, Ueno S, Inoue K. Evidence for the involvement of spinal endogenous ATP and P2X receptors in nociceptive responses caused by formalin and capsaicin in mice. Br J Pharmacol. 1999;128:1497-1504. https://doi.org/10.1038/sj.bjp.0702960
  19. Park MK, Song HC, Yang KY, Ju JS, Ahn DK. Participation of peripheral P2X receptors in orofacial inflammatory nociception in rats. Int J Oral Biol. 2011;36:143-148.
  20. Han SR, Yeo SP, Lee MK, Bae YC, Ahn DK. Early dexamethasone relieves trigeminal neuropathic pain. J Dent Res. 2010;89:915-920. https://doi.org/10.1177/0022034510374056
  21. Ahn DK, Choi HS, Yeo SP, Woo YW, Lee MK, Yang GY, Jeon HJ, Park JS, Mokha SS. Blockade of central cyclooxygenase (COX) pathways enhances the cannabinoid-induced antinociceptive effects of inflammatory temporomandibular joint (TMJ) nociception. Pain 2007;132:23-32. https://doi.org/10.1016/j.pain.2007.01.015
  22. Won KA, Park SH, Kim BK, Baek KS, Yoon DH, Ahn DK. Intracisternal administration of voltage dependent calcium channel blockers attenuates orofacial inflammatory nociceptive behavior in rats. Int J Oral Biol. 2011;36:43-50.
  23. Yaksh TL, Rudy TA. Chronic catheterization of spinal subarachnoid space. Physiol Behav. 1976;17:1031-1036. https://doi.org/10.1016/0031-9384(76)90029-9
  24. Yang KY, Kim HK, Jin MY, Ju JS, Ahn DK. Glia dose not participate in antinociceptive effects of gabapentin in rats with trigeminal neuropathic pain. Int J Oral Biol. 2012;37:121-129.
  25. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 1996; 272:735-738. https://doi.org/10.1126/science.272.5262.735
  26. Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G. Tissue distribution of the P2X receptor. Neuropharmacology 1997;36:1277-1283. https://doi.org/10.1016/S0028-3908(97)00140-8
  27. Yu Y, Ugawa S, Ueda T, Ishida Y, Inoue K, Kyaw Nyunt A, Umemura A, Mase M, Yamada K, Shimada S. Cellular localization of P2X7 receptor mRNA in the rat brain. Brain Res. 2008;1194:45-55. https://doi.org/10.1016/j.brainres.2007.11.064
  28. Franke H, Grosche J, Schadlich H, Krugel U, Allgaier C, Illes P. P2X receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 2001;108:421-429. https://doi.org/10.1016/S0306-4522(01)00416-X
  29. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 2005;114:386-396. https://doi.org/10.1016/j.pain.2005.01.002
  30. Zhou ZH, Wang JX, Liu BJ, Li M, Lu Y, Chen HS. Contribution of the spinal P2X7 receptors to bee venom-induced nociception and inflammation in conscious rats. Neurosci Lett. 2012;531:145-148. https://doi.org/10.1016/j.neulet.2012.10.040
  31. Murasaki K, Watanabe M, Takahashi K, Ito G, Suekawa Y, Inubushi T, Hirose N, Uchida T, Tanne K. P2X7 receptor and cytokines contribute to extra-territorial facial pain. J Dent Res. 2013;92:260-265. https://doi.org/10.1177/0022034512474668
  32. Itoh K, Chiang CY, Li Z, Lee JC, Dostrovsky JO, Sessle BJ. Central sensitization of nociceptive neurons in rat medullary dorsal horn involves purinergic P2X7 receptors. Neuroscience 2011;192:721-731. https://doi.org/10.1016/j.neuroscience.2011.06.083
  33. McGaraughty S, Wismer CT, Zhu CZ, Mikusa J, Honore P,Chu KL, Lee CH, Faltynek CR, Jarvis MF. Effects of A-317491, a novel and selective P2X3/P2X2/3 receptor antagonist, on neuropathic, inflammatory and chemogenic nociception following intrathecal and intraplantar administration. Br J Pharmacol. 2003;140:1381-1388. https://doi.org/10.1038/sj.bjp.0705574
  34. Guo LH, Trautmann K, Schluesener HJ. Expression of P2X4 receptor by lesional activated microglia during formalin-induced inflammatory pain. J Neuroimmunol. 2005;163:120-127. https://doi.org/10.1016/j.jneuroim.2005.03.007
  35. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K. P2X4 receptor induced in spinal microglia gate tactile allodynia after nerve injury. Nature 2003;424:778-783. https://doi.org/10.1038/nature01786
  36. Tsuda M, Kuboyama K, Inoue T, Nagata K, Tozaki-Saitoh H, Inoue K. Behavioral phenotypes of mice lacking purinergic P2X4 receptors in acute and chronic pain assays. Mol Pain 2009;5:28. https://doi.org/10.1186/1744-8069-5-28
  37. Hu B, Chiang CY, Hu JW, Dostrovsky JO, Sessle BJ. P2X receptors in trigeminal subnucleus caudalis modulate central sensitization in trigeminal subnucleus oralis. J Neurophysiol. 2002;88:1614-1624. https://doi.org/10.1152/jn.2002.88.4.1614
  38. Hui J, Zhang ZJ, Zhang X, Shen Y, Gao YJ. Repetitive hyperbaric oxygen treatment attenuates complete Freund's adjuvant-induced pain and reduces glia-mediated neuroinflammation in the spinal cord. J Pain 2013;14:747-758. https://doi.org/10.1016/j.jpain.2013.02.003
  39. Raghavendra V, Tanga FY, DeLeo JA. Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur J Neurosci. 2004;20:467-473. https://doi.org/10.1111/j.1460-9568.2004.03514.x
  40. Cao H, Zhang YQ. Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev. 2008;32:972-983. https://doi.org/10.1016/j.neubiorev.2008.03.009
  41. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19:312-318. https://doi.org/10.1016/0166-2236(96)10049-7
  42. Dong Y, Benveniste EN. Immune function of astrocytes. Glia 2001;36:180-190. https://doi.org/10.1002/glia.1107
  43. Milligan ED, Watkins LR. Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci. 2009;10:23-36. https://doi.org/10.1038/nrn2533
  44. Watkins LR, Maier SF. Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov. 2003;2:973-985. https://doi.org/10.1038/nrd1251
  45. Miller RJ, Jung H, Bhangoo SK, White FA. Handb Exp Pharmacol. 2009;194:417-449. https://doi.org/10.1007/978-3-540-79090-7_12
  46. Saab CY, Waxman SG, Hains BC. Alarm curse? The pain of neuroinflammation. Brain Res Rev. 2008;58:226-235. https://doi.org/10.1016/j.brainresrev.2008.04.002
  47. Surprenant A, North RA. Singaling at purinergic P2X receptors. Annu Rev Physiol. 2009;71:333-359. https://doi.org/10.1146/annurev.physiol.70.113006.100630