• Title/Summary/Keyword: thermal hyperalgesia

Search Result 49, Processing Time 0.027 seconds

Change of Pain Threshold and Nociceptive Flexion Reflex of Hyperalgesia Rat by High Voltage Pulsed Current (고전압맥동전류가 통각과민 백서의 통각역치 및 유해성 굴곡반사에 미치는 영향)

  • Kim, Su-Hyon;Moon, Dal-Ju;Choi, Sug-Ju;Jung, Dae-In;Lee, Jung-Woo;Jeong, Jin-Gyu;Kim, Tae-Youl
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.2
    • /
    • pp.25-34
    • /
    • 2006
  • Purpose: This study conducted quantitative sensory test and nociceptive flexion reflex(NFR) measurement to examine degree of pain depending on polarity of high voltage pulsed current(HVPC) of hyperalgesia site in hyperalgesia rat by local thermal injury. mechanical pain threshold, thermal pain threshold and root mean square of NFR were measured. Methods: This study was conducted with control group I of hyperalgesia rat at hind paw by thermal injury and experimental groups divided into cathodal HVPC group II, anodal HVPC group III and alternate HVPC group IV. It measured pain threshold and root mean square(RMS) of NFR and obtained the following results. Results: Mechanical pain threshold of hyperalgeisa site was significantly increased at groups II, III and IV applying HVPC group compared to control group, but there was no difference among HVPC groups. Thermal pain threshold of hyperalgesia site showed a significant increase in group II. Group III showed significant difference after 4 days of hyperalgesia. RMS of NFR at hyperalgeisa site was significantly reduced in group II after 2 days of hyperalgesia. Group III showed significant decrease after 5 and 6 days of hyperalgesia. Conclusion: Consequently it was found that application of HVPC of hyperalgesia site increased pain threshold at hyperalgesia site by mechanical stimuli and thermal stimuli. NFR by electrical stimuli was similar to pain threshold by mechanical stimuli. Effects by polarity of HVPC showed the greatest reduction of hyperalgesia when cathodal electrode was used.

  • PDF

Peripheral Cellular Mechanisms of Artemin-induced Thermal Hyperalgesia in Rats

  • Kim, Hye-Jin;Yang, Kui-Ye;Lee, Min-Kyung;Park, Min-Kyoung;Son, Jo-Young;Ju, Jin-Sook;Ahn, Dong-Kuk
    • International Journal of Oral Biology
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • In the present study, we investigated the role of peripheral ionotropic receptors in artemin-induced thermal hyperalgesia in the orofacial area. Male Sprague-Dawley rats weighting 230 to 280 g were used in the study. Under anesthesia, a polyethylene tube was implanted in the subcutaneous area of the vibrissa pad, which enabled drug-injection. After subcutaneous injection of artemin, changes in air-puff thresholds and head withdrawal latency time were evaluated. Subcutaneous injection of artemin (0.5 or $1{\mu}g$) produced significant thermal hyperalgesia in a dose-dependent manner. However, subcutaneous injection of artemin showed no effect on air-puff thresholds. IRTX ($4{\mu}g$), a TRPV1 receptor antagonist, D-AP5 (40 or $80{\mu}g$), an NMDA receptor antagonist, or NBQX (20 or $40{\mu}g$), an AMPA receptor antagonist, was injected subcutaneously 10 min prior to the artemin injection. Pretreatment with IRTX and D-AP5 significantly inhibited the artemin-induced thermal hyperalgesia. In contrast, pretreatment with both doses of NBQX showed no effect on artemin-induced thermal hyperalgesia. Moreover, pretreatment with H-89, a PKA inhibitor, and chelerythrine, a PKC inhibitor, decreased the artemin-induced thermal hyperalgesia. These results suggested that artemin-induced thermal hyperalgesia is mediated by the sensitized peripheral TRPV1 and NMDA receptor via activation of protein kinases.

Change of RIII Reflex of Primary and Secondary Hyperalgesia Site by High Voltage Pulsed Current (고전압맥동전류에 의한 일차 및 이차통각과민대의 RIII 반사의 변화)

  • Kim, Su-Hyon;Choi, Sug-Ju;Lee, Jung-Woo;Jeong, Jin-Gyu;Kim, Tae-Youl;Kim, Gye-Yeop
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • This study conducted RIII reflex measurement to examine degree of pain depending on polarity of high voltage pulsed current of primary and secondary hyperalgesia site in hyperalgesia rat by local thermal injury. Hind paw which was injury site was taken as primary hyperalgeisa site, sole which was injury adjacent site was taken as secondary hyperalgesia site, and mechanical pain threshold, thermal pain threshold and root mean square of RIII reflex were measured. This study was conducted with control group I of hyperalgesia rat at hind paw by thermal injury and experimental groups divided into cathodal high voltage treatment group II, anodal high voltage treatment group III and alternate high voltage treatment group IV, applied active electrode of high voltage pulsed current to hind paw directly, placed reference electrode on the sole of injury adjacent site and applied pulse frequency. It measured RIII reflex and obtained the following results: Root mean square of RIII reflex at primary hyperalgeisa site was significantly reduced in group II after 2 days of hyperalgesia. Group II showed significant decrease after 5 and 6 days of hyperalgesia. Root mean square of RIII reflex at secondary hyperalgesia site showed significant reduction in group II after 6 days of hyperalgesia. Consequently it was found that application of high voltage pulsed current of hyperalgesia site reduced RIII reflex at primary hyperalgeisa site and secondary hyperalgesia site by electrical stimuli. Effects by polarity of high voltage pulsed current showed the greatest reduction of pain threshold when cathodal active electrode was used.

  • PDF

Mechanism of Hyperalgesia Following Cutaneous Inflammation by Complete Freund Adjuvant (Complete Freund Adjuvant에 의한 피부염증에서 통각과민현상의 기전)

  • Jeong, Yong;Leem, Joong-Woo;Chung, Seung-Soo;Kim, Yun-Suk;Yoon, Duck-Mi;Nam, Taick-Sang;Paik, Kwang-Se
    • The Korean Journal of Pain
    • /
    • v.13 no.2
    • /
    • pp.164-174
    • /
    • 2000
  • Background: After an injury to tissue such as the skin, hyperalgesia develops. Hyperalgesia is characterized by an increase in the magnitude of pain evoked by noxious stimuli. It has been postulated that in the mechanism of hyperalgesia (especially secondary hyperalgesia) and allodynia, a sensitization of central nervous system such as spinal dorsal horn may contribute to development of hyperalgesia. However, the precise mechanism is still unclear. In the present study, we investigated the roles of N-methyl-D-aspartate (NMDA) receptor and nitric oxide (NO) system in the mechanism of hyperalgesia, and their relations with c-fos expression Methods: Inflammation was induced by injection of complete Freund adjuvant (CFA) into unilateral hindpaw of Sprague-Dawley rat. Behavioral studies measuring paw withdrawal responses by von Frey filaments and paw withdrawal latencies by radiant heat stimuli and stainings of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase and c-fos immunoreactivity were performed. The effects of MK-801, an NMDA receptor blocker and $N^\omega$-nitro-L-arginine (L-NNA), a nitric oxide synthase (NOS) inhibitor were evaluated. Results: 1) Injection of CFA induced mechanical allodynia, mechanical hyperalgesia and thermal hyperalgesia. And it increased the number of NADPH-diaphorase positive neurons and c-fos expression neurons. 2) MK-801 inhibited mechanical hyperalgesia and thermal hyperalgesia induced by CFA and reduced the number of NADPH-diaphorase positive neurons and c-fos expression neurons. 3) L-NNA inhibited the thermal hyperalgesia and reduced the number of NADPH-diaphorase positive neurons, but did not affect the number of c-fos expression neurons. Conclusions: These results suggest that in the mechanism of mechanical hyperalgesia, NMDA receptor but not NO-system is involved and in the case of thermal hyperalgesia both NMDA receptor and NO system are involved. NO system did not affect the expression of c-fos, but c-fos expression and NOS activity were dependent on the activity of NMDA receptor.

  • PDF

The Involvement of Protein kinase C in Glutamate-Mediated Nociceptive Response at the Spinal Cord of Rats (흰쥐의 척수에서 Glutamate가 매개하는 Nociceptive Response에 있어서 Protein kinase C의 관련성)

  • 김성정;박전희;이영욱;양성준;이종은;이병천;손의동;허인회
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.263-273
    • /
    • 1999
  • When glutamate was infected intrathecally, the result is similar to those produced by TPA injected. The involvement of protein kinase C (PKC) in the nociceptive responses in rat dorsal horn neurons of lumbar spinal cord was studied. In test with formalin, a PKC inhibitor (chelerythrine) inhibited dose-dependently the formalin-induced behavior response. Neomycin also inhibited it significantly. But, a PKC activator (12-O-tetradecanoylphorbol-13-ester, TPA) showed reverse effect. When gluatamate was injected intrathecally, we observed the result is smilar to those produced by TPA injection. On the other hand, intrathecal injection of glutamate induced thermal and mechanical hyperalgesia. In Tail-flick test, we examined the involvement of PKC on the glutamate-indeced thermal hyperalgesia. Chelerythrine showed an inhibitory effect and TPA enhanced thermal response. Glutamate decreased the mechanical threshold significantly. A pretreatment of chelerythrine and neomycin inhibited glutamate-induced mechanical hyperalgesia, but the effect of neomycin was not significant. TPA had little effect on the mechanical nociceptive response. These results suggest that the PKC activation through metabotropic receptor at postsynaptic region of spinal cord dorsal horn neurons may influence on the persistent nociception produced by chemical stimulation with formalin, thermal and mechanical hyperalgesia induced by glutamate.

  • PDF

Muscimol as a treatment for nerve injury-related neuropathic pain: a systematic review and meta-analysis of preclinical studies

  • Hamzah Adel Ramawad;Parsa Paridari;Sajjad Jabermoradi;Pantea Gharin;Amirmohammad Toloui;Saeed Safari;Mahmoud Yousefifard
    • The Korean Journal of Pain
    • /
    • v.36 no.4
    • /
    • pp.425-440
    • /
    • 2023
  • Background: Muscimol's quick onset and GABAergic properties make it a promising candidate for the treatment of pain. This systematic review and meta-analysis of preclinical studies aimed at summarizing the evidence regarding the efficacy of muscimol administration in the amelioration of nerve injury-related neuropathic pain. Methods: Two independent researchers performed the screening process in Medline, Embase, Scopus and Web of Science extracting data were extracted into a checklist designed according to the PRISMA guideline. A standardized mean difference (SMD [95% confidence interval]) was calculated for each. To assess the heterogeneity between studies, 2 and chi-square tests were utilized. In the case of heterogeneity, meta-regression and subgroup analyses were performed to identify the potential source. Results: Twenty-two articles met the inclusion criteria. Pooled data analysis showed that the administration of muscimol during the peak effect causes a significant reduction in mechanical allodynia (SMD = 1.78 [1.45-2.11]; P < 0.0001; I2 = 72.70%), mechanical hyperalgesia (SMD = 1.62 [1.28-1.96]; P < 0.0001; I2 = 40.66%), and thermal hyperalgesia (SMD = 2.59 [1.79-3.39]; P < 0.0001; I2 = 80.33%). This significant amendment of pain was observed at a declining rate from 15 minutes to at least 180 minutes post-treatment in mechanical allodynia and mechanical hyperalgesia, and up to 30 minutes in thermal hyperalgesia (P < 0 .0001). Conclusions: Muscimol is effective in the amelioration of mechanical allodynia, mechanical hyperalgesia, and thermal hyperalgesia, exerting its analgesic effects 15 minutes after administration for up to at least 3 hours.

The Effects of TENS and cold application on secondary thermal hyperalgesia in rats induced by muscle pain (근통증이 유발된 흰쥐에 있어 TENS와 냉적용이 이차성 열 통각과민에 미치는 영향)

  • Chae Yun-Won;Kim Sang-Yub;Kim Jin-sang;Park Rae-joon;Gu Hyun-mo;Lim Chang hun
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.2
    • /
    • pp.181-194
    • /
    • 2004
  • The aim of this study was to investigate the effects of TENS and cold application on secondary thermal hyperalgesia in rats induced by muscle pain. Muscle pain was induced in male Sprague-Dowley rats by intra-muscular injection of gastrocnemius with $3\%$ carrageenan. The paw withdrawal latency(PWL) and tail flick test(TFT) to heat were used to detect secodary thermal hyperalgesia induced by the muscle pain. PWL and TFT were quantified before and 4, 10, and 24 h after induction of muscle pain and after application of TENS(100Hz, $100{\mu}s$, sensory intensity) and cold($4^{\circ}C$). TENS and cold significantly reduced the PWL and TFT to heat stimuli when compared with controls receiving no TENS and cold(p<.05). These results suggested that application of TENS and cold attributed to decrease secodary thermal hyperalgesia in rat induced by muscle pain.

  • PDF

The Effect of Intrathecal ACEA 2085, Highly Selective AMPA Receptor Antagonist on the Hyperalgesia Observed after Thermal Injury in the Rat (흰쥐에서 척수강내로 투여한 AMPA 수용체 길항제, ACEA 2085의 항통각과민 효과)

  • Jun, Jong-Hun;Yeom, Jong-Hoon;Kim, Yong-Chul;Shim, Jae-Chul;Kim, Kyoung-Hun;Suh, Jung-Kook;Yoo, Hee-Koo
    • The Korean Journal of Pain
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Background: To study the role of spinal alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors in pain behaviors caused by mild burn, we examined the effect of intrathecal administered ACEA 2085, which has been recently characterized as a high potency competitive AMPA receptor antagonist, on the thermal hyperalgesia state induced by mild burn. Methods: A thermal injury was induced by applying the left hind paw to a thermal surface ($52.5^{\circ}C$) for 45 sec. Thermal escape latency of the hind paw was determined using an underglass thermal stimulus. Thirty min after thermal injury, the paw withdrawal latency (PWL) in injured paw of all groups fell from 10~12 sec to 5~7 sec. At that time, ACEA 2085 (0.01~0.1 mcg) and 6-cyano-7-nitroquinoxalinedione (CNQX, 1~30 mcg) were injected through intrathecal heters in rats with mild burn injury on the right hindpaw. And then, PWL were measured in the both hindpaw every 30 minutes for about three hours. Results: The intrathecal injection of ACEA 2085 produced a dose dependent reversal of the hyperalgesia in the right hindpaw and more potent than CNQX, but had no effect upon the response latency of the normal left hind paw even at the largest doses. All effects were observed at doses that had no significant effect upon motor function. Conclusions: Intrathecal ACEA 2085, highly selective AMPA receptor antagonist produce a dose- dependent reversal of the thermal hyperalgesia evoked mild burn injury. These results suggested that spinal AMPA receptor play an important role in the hyperalgesia induced by mild burn injury.

  • PDF

Differential Role of Central GABA Receptors in Nociception of Orofacial Area in Rats

  • Lee, Ah-Ram;Lim, Nak-hyung;Kim, Hye-Jin;Kim, Min-Ji;Ju, Jin-Sook;Park, Min-Kyoung;Lee, Min-Kyung;Yang, Kui-Ye;Ahn, Dong-Kuk
    • International Journal of Oral Biology
    • /
    • v.40 no.3
    • /
    • pp.117-125
    • /
    • 2015
  • The present study investigated the role of central $GABA_A$ and $GABA_B$ receptors in orofacial pain in rats. Experiments were conducted on Sprague-Dawley rats weighing between 230 and 280 g. Intracisternal catheterization was performed for intracisternal injection, under ketamine anesthesia. Complete Freund's Adjuvant (CFA)-induced thermal hyperalgesia and inferior alveolar nerve injury-induced mechanical allodynia were employed as orofacial pain models. Intracisternal administration of bicuculline, a $GABA_A$ receptor antagonist, produced mechanical allodynia in naive rats, but not thermal hyperalgesia. However, CGP35348, a $GABA_B$ receptor antagonist, did not show any pain behavior in naive rats. Intracisternal administration of muscimol, a $GABA_A$ receptor agonist, attenuated the thermal hyperalgesia and mechanical allodynia in rats with CFA treatment and inferior alveolar nerve injury, respectively. On the contrary, intracisternal administration of bicuculline also attenuated the mechanical allodynia in rats with inferior alveolar nerve injury. Intracisternal administration of baclofen, a $GABA_B$ receptor agonist, attenuated the thermal hyperalgesia and mechanical allodynia in rats with CFA treatment and inferior alveolar nerve injury, respectively. In contrast to $GABA_A$ receptor antagonist, intracisternal administration of CGP35348 did not affect either the thermal hyperalgesia or mechanical allodynia. Our current findings suggest that the $GABA_A$ receptor, but not the $GABA_B$ receptor, participates in pain processing under normal conditions. Intracisternal administration of $GABA_A$ receptor antagonist, but not $GABA_B$ receptor antagonist, produces paradoxical antinociception under pain conditions. These results suggest that central GABA has differential roles in the processing of orofacial pain, and the blockade of $GABA_A$ receptor provides new therapeutic targets for the treatment of chronic pain.

The effect of low power GaAlAs laser stimulation on anti-nociception and spinal neuronal activity related to pain sensation in the polyarthritis of rats (다발성 관절염 실험동물 모델에서 저출력 GaAlAs 레이저 자극의 진통효능 및 통증관련 척수내 신경세포의 활성변화에 관한 연구)

  • Chang, Moon-Kyung;Choi, Young-Duk;Park, Bong-Soon
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.1
    • /
    • pp.180-189
    • /
    • 2003
  • The experiments were designated to evaluate the anti-nociceptive effect of low power laser stimulation on acupoint or non-acupoint using arthrogenic solution induced poly arthritis animal model. Evaluation of potential antinociceptive effect of low power laser on arthritis has employed measurements of the foot bending test, the development of either thermal or mechanical hyperalgesia following the arthritis induction. The analysis of thermal hyperalgesia includes Hargreaves's method. Randall-Sellitto test was utilized for evaluating mechanical hyperalgesia. In addition, the antinociceptive effect of low power laser stimulation on arthritis induced spinal Fos expression was analyzed using a computerized image analysis system. The results were summerized as follows: 1. In laser stimulation on acupoint treated animal, laser stimulation dramatically inhibited the development of pain in foot bending test as compared to those of non acupoint treated animal group and non treated animal group. 2. The threshold of thermal stimulation was significantly increased by low power laser stimulation on acupoint as compared to that of non treated control group. 3. Laser stimulation on acupoint dramatically attenuated the development of mechanical hyperalgesia as compared to that of non treated group. 4. Low power laser stimulation on acupoint significantly suppressed arthritis induced Fos expression in the lumbar spinal cord at 3 week post arthritis induction. In conclusion, the results of the present study demonstrated that low power laser stimulation on acupoint has potent anti-nociceptive effect on arthritis. Additional supporting data for an antinociceptive effect of laser stimulation was obtained using Fos immunohistochemical analysis on spinal cord section. Those data indicated that laser stimulation induced antinociception was mediated by suppression of spinal neuron activity in pain sensation.

  • PDF