DOI QR코드

DOI QR Code

물/PG-기반 $Al_2O_3$ 나노유체를 적용한 수냉식 CPU 쿨러의 냉각성능

Cooling Performance of Liquid CPU Cooler using Water/PG-based $Al_2O_3$ Nanofluids

  • 박용준 (한국항공대학교 항공우주 및 기계공학부) ;
  • 김규한 (한국항공대학교 항공우주 및 기계공학부) ;
  • 이승현 (한국항공대학교 항공우주 및 기계공학부) ;
  • 장석필 (한국항공대학교 항공우주 및 기계공학부)
  • 투고 : 2014.02.03
  • 심사 : 2014.03.08
  • 발행 : 2014.03.31

초록

In this study, the cooling performance of a liquid CPU cooler using the water/propylene glycol(PG)-based $Al_2O_3$ nanofluids is experimentally investigated. Water/PG-based $Al_2O_3$ nanofluids are manufactured by two-step method with ultrasonic energy for 10 hours. The volume fractions of the nanofluids are 0.25% and 0.35%. Thermal conductivity and viscosity of the nanofluids are measured to theoretically predict the thermal performance of the liquid CPU cooler using performance factor. Performance factor results indicate that the cooling performance of the liquid CPU cooler can be improved using the manufactured nanofluids. To evaluate the cooling performance of the liquid CPU cooler experimentally, temperature differences between ambient air and heater are measured for base fluid and nanofluids respectively. Based on the results, it is shown that performance of the liquid CPU cooler using $Al_2O_3$ nanofluids is improved maximum up to 8.6% at 0.25 Vol.%.

키워드

참고문헌

  1. J.-T. Choi, O.-K. Kwon, D.-A. Cha, J.-H. Yun, Y. C. Kim, "Experimental Study of Liquid Cooling System for Computer", 2010 Summer Annual Conference, 2010, pp. 867-872, Korea.
  2. H. C. Hahm, C. Y. Park, "Experimental Study on the Performance of an Electric Component Liquid Cooling System with Variation of the Waterblock Internal Shape", Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 25, No. 6, 2013, pp. 331-337. https://doi.org/10.6110/KJACR.2013.25.6.331
  3. Y. J. Hwang, Y. C. Ahn, H. S. Shin, C. G. Lee, G. T. Kim, H. S. Park, J. K. Lee, "Investigation on Characteristics of Thermal Conductivity Enhancement of Nanofluids", Current Applied Physics, Vol. 6, No. 6, 2006, pp. 1068-1071. https://doi.org/10.1016/j.cap.2005.07.021
  4. D. Zhua, X. Lia, N. Wanga, X. Wanga, J. Gao, H. Li, "Dispersion Behavior and Thermal Conductivity Characteristics of $Al_{2}O_{3}$ $H_{2}O$ Nanofluids", Current Applied Physics Vol. 9. No.1, 2009, pp. 131-139. https://doi.org/10.1016/j.cap.2007.12.008
  5. K. S. Suganthi, M. Parthasarathy, K. S. Rajan, "Liquidlayering Induced, Temperature-dependent Thermal Conductivity Enhancement in ZnO Propylene Glycol Nanofluids", Chemical Physics Letters, Vol. 561-562, 2013, pp. 120-124. https://doi.org/10.1016/j.cplett.2013.01.044
  6. E. V. Timofeeva, A. N. Gavrilov, J. M. McCloskey, Y. V. Tolmachev, S. Sprunt, L. M. Lopatina, J. V. Selinger, "Thermal Conductivity and Particle Agglomeration in Alumina Nanofluids: Experiment and Theory", Physical Review E, Vol. 76, Issue 6, 2007, pp. 061203. https://doi.org/10.1103/PhysRevE.76.061203
  7. J. Garg et al. "Enhanced Thermal Conductivity and Viscosity of Copper Nanoparticles in Ethylene Glycol Nanofluid", Journal of Applied Physics Vol. 103, Issue 7, 2008, pp. 074301-074301. https://doi.org/10.1063/1.2902483
  8. W. Duangthongsuk, S. Wongwises, "Measurement of Temperature-dependent Thermal Conductivity and Viscosity of $TiO_2$-water Nanofluids", Experimental Thermal and Fluid Science, Vol. 33, 2009, pp. 706714.
  9. K. Y. Leong, R. Saidur, S. N. Kazi, A. H. Mamun, "Performance Investigation of an Automotive Car Radiator Operated with Nanofluid-based Coolants (Nanofluid as a Coolant in a Radiator)", Applied Thermal Engineering, Vol. 30, Issues 17-18, 2010, pp. 2685- 2692. https://doi.org/10.1016/j.applthermaleng.2010.07.019
  10. S. M. Peyghambarzadeh, S. H. Hashemabadi, M. Seifi Jamnani, S. M. Hoseini, "Improving the Cooling Performance of Automobile Radiator with $Al_{2}O_{3}$/water Nanofluid", Applied Thermal Engineering, Vol. 31, Issue 10, 2011, pp. 1833-1838. https://doi.org/10.1016/j.applthermaleng.2011.02.029
  11. J.-H. Lee, K. S. Hwang, S. P. Jang, B. H. Lee, J. H. Kim, S. U. S. Choi and C. J. Choi, "Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume Concentrations of $Al_{2}O_{3}$ Nanoparticles", International Journal of Heat and Mass Transfer, Vol. 51, 2008, pp. 2651-2656. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.026
  12. S. -H. Lee, S. P. Jang, "Note: Effect of the Tilting Angle of the Wire on the Onset of Natural Convection in the Transient Hot wire method", Review of Scientific Instruments, Vol. 83, 2012, pp.076103. https://doi.org/10.1063/1.4731727
  13. H. S. Carslaw, J. C. Jaeger, "Conduction of Heat on Solids", 2nd Ed, 1959, Oxford University Press.
  14. S.-H. Lee, H. J. Kim, S. Y. Lee, K. H. Kim, Y.-J. Park, J.-H. Lee, J.-I. Seo, S. M. Cha and S. P. Jang, "A Study on the Thermal Performance of Water-based Carbon Nanotubes (CNT) Nanofluids in Laminar Flow Region", Proc. of the KSME, 2013 Spring Annual Conference, 2013, pp. 154-155, Korea.
  15. R. Prasher, D. Song, J. Wang, and P. Phelan, "Measurements of Nanofluid Viscosity and its Implications for Thermal Applications", Applied Physics Letters, Vol. 89, 2006, pp. 133108. https://doi.org/10.1063/1.2356113
  16. E. V. Timofeeva, W. Yu, D. M. France, D. Singh, J. L. Routbort, "Nanofluids for Heat Transfer : an Engineering Approach", Nanoscale Research Letters, Vol. 6, 2011, pp. 182. https://doi.org/10.1186/1556-276X-6-182