DOI QR코드

DOI QR Code

지속 가능한 블록 공중합체 기반 열가소성 탄성체

Sustainable Block Copolymer-based Thermoplastic Elastomers

  • 신지훈 (한국화학연구원 융합화학연구본부 산업바이오화학연구그룹) ;
  • 김영운 (한국화학연구원 융합화학연구본부 산업바이오화학연구그룹) ;
  • 김건중 (인하대학교 생명화학공학과부)
  • Shin, Jihoon (Division of Convergence Chemistry, Industrial Bio-Based Materials Research Group, Korea Research Institute of Chemical Technology) ;
  • Kim, Young-Wun (Division of Convergence Chemistry, Industrial Bio-Based Materials Research Group, Korea Research Institute of Chemical Technology) ;
  • Kim, Geon-Joong (Department of Chemical Engineering, Inha University)
  • 투고 : 2014.03.19
  • 발행 : 2014.04.10

초록

ABA형태의 삼중블록공중합체는 고무상과 유리상의 상대적 성분에 좌우되는 열가소성 탄성체와 강화 플라스틱으로써 유용하다. 이러한 물질은 다른 고분자와 혼합하여 첨가제, 강화제, 상용화제로써 기능성을 줄 수 있다. 상업적으로 유용한 대부분의 블록 공중합체는 석유로부터 유래된다. 지구상의 유한한 화석자원 공급과 석유 사용 및 채굴에 관련된 경제, 환경적 비용을 고려하면 그 대안은 매력적이다. 이러한 흐름에 더하여 미래 지속 가능한 물질의 최종 용도를 위한 설계 및 그 실행이 요구되고 있다. 본 총설에서는 재생 가능한 ABA 형태의 삼중블록 공중합체 합성과 특성을 살펴보고, 특히 공중합체의 경성부분을 위한 높은 유리 전이온도 혹은 녹는점을 지닌 식물 유래 폴리올레핀과 다당류 유래 폴리락타이드와 공중합체의 연성부분을 위한 바이오 기반, 낮은 유리 전이온도, 무결정의 탄화수소계 고분자에 대해 논의하려고 한다. 이를 위해서 다양하게 제어된 고분자 중합법은 강력한 도구임이 증명되고 있다. 이러한 혼성 고분자의 정교한 합성에 관한 연구는 재생가능성, 생분해성, 고성능을 지닌 새로운 탄성체와 강화 플라스틱의 발전을 이끌고 있다.

Block copolymers including ABA triblock architectures are useful as thermoplastic elastomers and toughened plastics depending on the relative glassy and rubbery content. These materials can be blended with other polymers and utilized as additives, toughening agents, and compatibilizers. Most of commercially available block copolymers are derived from petroleum. Renewable alternatives are attractive considering the finite supply of fossil resources on earth and the overall economic and environmental expenses involved in the recovery and use of oil. Furthermore, tomorrow's sustainable materials are demanding the design and implementation with programmed end-of-life. The present review focuses on the preparation and evaluation of new classes of renewable ABA triblock copolymers and also emphasizes on the use of carbohydrate-derived poly(lactide) or plant-based poly(olefins) having a high glass transition temperature and/or high melting temperature for the hard phase in addition to the use of bio-based amorphous hydrocarbon polymers with a low glass transition temperature for the soft components. The combination of multiple controlled polymerizations has proven to be a powerful approach. Precision-controlled synthesis of these hybrid macromolecules has led to the development of new elastomers and tough plastics offering renewability, biodegradability, and high performance.

키워드

참고문헌

  1. G. Holden, N. R. Legge, R. Quirk, and H. E. Schroeder, Thermoplastic Elastomers., 2nded., Hanser Publishers, Munich (1996).
  2. G. Holden, H. R. Kricheldorf, and R. P. Quirk, Thermoplastic Elastomers., 3rded., Hanser Publishers, Munich (2004).
  3. F. S. Bates and G. H. Fredrickson, Block Copolymers-Designer Soft Materials, Phys. Today., 52, 32 (1999).
  4. U. Nagpal, F. A. Detcheverry, P. F. Nealey, and J. J. de Pablo, Morphologies of Linear Triblock Copolymers from Monte Carlo Simulations, Macromolecules., 44, 5490 (2011). https://doi.org/10.1021/ma200330f
  5. M. W. Matsen and R. B. Thompson, Equilibrium behavior of symmetric ABA triblock copolymer melts, J. Chem. Phys., 111, 7139 (1999). https://doi.org/10.1063/1.480006
  6. J. Xu, A. Zhang, T. Zhou, X. Cao, and Z. Xie, A study on thermal oxidation mechanism of styrene-butadiene-styrene block copolymer (SBS), Polym. Degrad. Stab., 92, 1682 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.06.008
  7. R. P. Singh, S. M. Desai, S. S. Solanky, and P. N. Thanki, Photodegradation and stabilization of styrene-butadiene-styrene rubber, J. Appl. Polym. Sci., 75, 1103 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000228)75:9<1103::AID-APP3>3.0.CO;2-M
  8. P. B. Weisz, Basic choices and constraints on long-term energy supplies, Phys. Today., 57, 47 (2004).
  9. K. Satoh, H. Sugiyama, and M. Kamigaito, Biomass-derived heat-resistant alicyclic hydrocarbon polymers: poly(terpenes) and their hydrogenated derivatives, Green Chem., 8, 878 (2006). https://doi.org/10.1039/b607789g
  10. K. Satoh, S. Saitoh, and M. Kamigaito, A Linear Lignin Analogue: Phenolic Alternating Copolymers from Naturally Occurring $\beta$-Methylstyrene via Aqueous-Controlled Cationic Copolymerization, J. Am. Chem. Soc., 129, 9586 (2007). https://doi.org/10.1021/ja0732227
  11. K. Satoh, M. Matsuda, K. Nagai, and M. Kamigaito, AAB-Sequence Living Radical Chain Copolymerization of Naturally Occurring Limonene with Maleimide: An End-to-End Sequence-Regulated Copolymer, J. Am. Chem. Soc., 132, 10003 (2010). https://doi.org/10.1021/ja1042353
  12. M. Matsuda, K. Satoh, and M. Kamigaito, 1:2-sequence-regulated radical copolymerization of naturally occurring terpenes with maleimide derivatives in fluorinated alcohol, J. Polym. Sci. PartA: Polym. Chem., 51, 1774 (2013). https://doi.org/10.1002/pola.26556
  13. M. Matsuda, K. Satoh, and M. Kamigaito, Periodically Functionalized and Grafted Copolymers via 1:2-Sequence-Regulated Radical Copolymerization of Naturally Occurring Functional Limonene and Maleimide Derivatives, Macromolecules., 46, 5473 (2013). https://doi.org/10.1021/ma401021d
  14. F. S. Bates and G. H. Fredrickson, Block Copolymer Thermodynamics: Theory and Experiment, Annu. Rev. Phys. Chem. 41, 525 (1990). https://doi.org/10.1146/annurev.pc.41.100190.002521
  15. V. Avetz and P. F. W. Simon, Phase Behaviour and Morphologies of Block Copolymers, Adv. Polym. Sci., 189, 125 (2005). https://doi.org/10.1007/12_004
  16. C. J. Hawker and T. P. Russell, Block Copolymer Lithography: Merging "Bottom-Up" with "Top-Down" Processes, MRSBull., 30, 952 (2005).
  17. M. A. R. Meier, J. O. Metzger, and U. S. Schubert, Plant oil renewable resources as green alternatives in polymer science, Chem. Soc. Rev., 36, 1788 (2007). https://doi.org/10.1039/b703294c
  18. Y. Xia and R. C. Larock, Vegetable oil-based polymeric materials: synthesis, properties, and applications, Green Chem., 12, 1893 (2010). https://doi.org/10.1039/c0gc00264j
  19. R. Bhardwaj and A. K. Mohanty, Advances in the Properties of Polylactides Based Materials: A Review, J. Biobased Mater. Bio., 1, 191 (2007). https://doi.org/10.1166/jbmb.2007.023
  20. P. Gallezot, Process options for converting renewable feedstocks to bioproducts, Green Chem., 9, 295 (2007). https://doi.org/10.1039/b615413a
  21. H. Wondraczek, A. Kotiaho, P. Fardim, and T. Heinze, Photoactive polysaccharides, Carbohydr. Polym., 83, 1048 (2011). https://doi.org/10.1016/j.carbpol.2010.10.014
  22. P. A. Wilbon, F. Chu, and C. Tang, Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin, Macromol. Rapid Commun., 34, 8 (2013). https://doi.org/10.1002/marc.201200513
  23. A. Gandini, The irruption of polymers from renewable resources on the scene of macromolecular science and technology, Green Chem., 13, 1061 (2011). https://doi.org/10.1039/c0gc00789g
  24. A. C. Albertsson and I. K. Varma, Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications, Biomacromolecules., 4, 1466 (2003). https://doi.org/10.1021/bm034247a
  25. Y. Ikada and H. Tsuji, Biodegradable polyesters for medical and ecological applications, Macromol. Rapid Commun., 21, 117 (2000). https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X
  26. O. Dechy-Cabaret, B. Martin-Vaca, and D. Bourissou, Controlled Ring-Opening Polymerization of Lactide and Glycolide, Chem. Rev., 104, 6147 (2004). https://doi.org/10.1021/cr040002s
  27. K. J. Zhu, L. Xiangzhou, and Y. Shilin, Preparation, characterization, and properties of polylactide (PLA)-poly(ethylene glycol) (PEG) copolymers: A potential drug carrier, J. Appl. Polym. Sci., 39, 1 (1990). https://doi.org/10.1002/app.1990.070390101
  28. H. Qian, J. Bei, and S. Wang, Synthesis, characterization and degradation of ABA block copolymer of l-lactide and $\varepsilon$-caprolactone, Polym. Degrad. Stab., 68, 423 (2000). https://doi.org/10.1016/S0141-3910(00)00031-8
  29. D. Cohn and A. Hotovely-Salomon, Biodegradable multiblock PEO/ PLA thermoplastic elastomers: molecular design and properties, Polymer., 46, 2068 (2005). https://doi.org/10.1016/j.polymer.2005.01.012
  30. L. Sipos, M. Zsuga, and G. Deak, Synthesis of poly (L-lactide)- block-polyisobutylene-block-poly (L-lactide), a new biodegradable thermoplastic elastomer, Macromol. Rapid Commun., 16, 935 (1995). https://doi.org/10.1002/marc.1995.030161209
  31. E. M. Frick and M. A. Hillmyer, Synthesis and characterization of polylactide-block-polyisoprene-block-polylactide triblock copolymers: new thermoplastic elastomers containing biodegradable segments, Macromol. Rapid Commun., 21, 1317 (2000). https://doi.org/10.1002/1521-3927(20001201)21:18<1317::AID-MARC1317>3.0.CO;2-B
  32. E. M. Frick, A. S. Zalusky, and M. A. Hillmyer, Characterization of Polylactide-b-polyisoprene-b-polylactide Thermoplastic Elastomers, Biomacromolecules., 4, 216 (2003). https://doi.org/10.1021/bm025628b
  33. J. M. Yu, P. Dubois, and R. Jerome, Poly[alkyl methacrylateb- butadiene-b-alkyl methacrylate] Triblock Copolymers: Synthesis, Morphology, and Mechanical Properties at High Temperatures, Macromolecules., 29, 8362 (1996). https://doi.org/10.1021/ma960886k
  34. S. Zhang, Z. Hou, and K. E. Gonsalves, Copolymer synthesis of poly(L-lactide-b-DMS-L-lactide) via the ring opening polymerization of L-lactide in the presence of $\alpha$, $\omega$-hydroxylpropyl-terminated PDMS macroinitiator, J. Polym. Sci., PartA: Polym. Chem., 34, 2737 (1996). https://doi.org/10.1002/(SICI)1099-0518(19960930)34:13<2737::AID-POLA18>3.0.CO;2-D
  35. A. Bachari, G. Belorgey, G. Helary, and G. Sauvet, Synthesis and characterization of multiblock copolymers poly[poly(L-lactide)-block- polydimethylsiloxane], Macromol. Chem. Phys., 196, 411 (1995). https://doi.org/10.1002/macp.1995.021960130
  36. H. Abe, I. Matsubara, Y. Doi, Y. Hori, and A. Yamaguchi, Physical Properties and Enzymic Degradability of Poly (3-hydroxybutyrate) Stereoisomers with Different Stereoregularities, Macromolecules., 2-7, 6018 (1994).
  37. S. Hiki, M. Miyamoto, and Y. Kimura, Synthesis and characterization of hydroxy-terminated [RS]-poly(3-hydroxybutyrate) and its utilization to block copolymerization with l-lactide to obtain a biodegradable thermoplastic elastomer, Polymer., 41, 7369 (2000). https://doi.org/10.1016/S0032-3861(00)00086-0
  38. A. P. Pêgo, M. J. A. Van Luyn, L. A. Brouwer, P. B. Van Wachem, A. A. Poot, D. W. Grijpma, and J. Feijen, In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or e-caprolactone: Degradation and tissue response, J. Biomed. Mater. Res., 67A, 1044 (2003). https://doi.org/10.1002/jbm.a.10121
  39. B. S. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, Cyclic mechanical strain regulates the development of engineered smooth muscle tissue, Nat. Biotechnol., 17, 979 (1999). https://doi.org/10.1038/13671
  40. B. S. Kim and D. J. Mooney, Scaffolds for Engineering Smooth Muscle Under Cyclic Mechanical Strain Conditions, J. Biomed. Eng., 122, 210 (2000).
  41. W. Guerin, M. Helou, J. F. Carperntier, M. Slawinski, J. M. Brusson, and S. M. Guillaume, Macromolecular engineering via ring-opening polymerization (1): L-lactide/trimethylene carbonate block copolymers as thermoplastic elastomers, Polym. Chem., 4, 1095 (2013). https://doi.org/10.1039/c2py20859h
  42. M. R. Kember, J. Copley, A. Buchard, and C. K. Williams, Triblock copolymers from lactide and telechelic poly(cyclohexene carbonate), Polym. Chem., 3, 1196 (2012). https://doi.org/10.1039/c2py00543c
  43. M. R. Kember, P. D. Knight, P. T. R. Reung, and C. K. Williams, Highly Active Dizinc Catalyst for the Copolymerization of Carbon Dioxide and Cyclohexene Oxide at One Atmosphere Pressure, Angew. Chem., Int. Ed., 48, 931 (2009). https://doi.org/10.1002/anie.200803896
  44. B. Z. Chisholm and J. G. Zimmer, Isothermal crystallization kinetics of commercially important polyalkylene terephthalates, J. Appl. Polym. Sci., 76, 1296 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000523)76:8%3C1296::AID-APP10%3E3.0.CO;2-N
  45. S. M. Hong, M. W. Kim, D. J. Lee, K. S. Park, T. J. Kang, and J. R. Youn, Chain Extension Effects of para-Phenylene Diisocyanate on Crystallization Behavior and Biodegradability of Poly(lactic acid)/ Poly(butylene terephthalate) Blends, Adv. Compos. Mater., 19, 331 (2010). https://doi.org/10.1163/092430409X12605406698471
  46. J. Zhou, Z. Jiang, Z. Wang, J. Zhang, J. Li, Y. Li, J. Zhang, P. Chen, and Q. Gu, Synthesis and characterization of triblock copolymer PLA-b-PBT-b-PLA and its effect on the crystallization of PLA, RSCAdvances., 3, 18464 (2013).
  47. B. Ameduri, From Vinylidene Fluoride (VDF) to the Applications of VDF-Containing Polymers and Copolymers: Recent Developments and Future Trends, Chem. Rev., 109, 6632 (2009). https://doi.org/10.1021/cr800187m
  48. H. Kawai, The Piezoelectricity of Poly (vinylidene Fluoride), Jpn. J. Appl. Phys., 8, 975 (1969). https://doi.org/10.1143/JJAP.8.975
  49. A. J. Lovinger, Ferroelectric Polymers, Science., 220, 1115 (1983). https://doi.org/10.1126/science.220.4602.1115
  50. V. S. D. Voet, G. O. R. van Ekenstein, N. L. Meereboer, A. H. Hofman, G. ten Brinke, and K. Loos, Double-crystalline PLLA-b- PVDF-b-PLLA triblock copolymers: preparation and crystallization, Polym. Chem. DOI: 10.1039/c3py01560b (2014).
  51. K. S. Anderson, K. M. Schreck, and M. A. Hillmyer, Toughening Polylactide, Polym. Rev., 48, 85 (2008). https://doi.org/10.1080/15583720701834216
  52. C. C. Honeker and E. L. Thomas, Impact of Morphological Orientation in Determining Mechanical Properties in Triblock Copolymer Systems, Chem. Mater., 8, 1702 (1996). https://doi.org/10.1021/cm960146q
  53. K. Stridsberg and A. C. Albertsson, Controlled ring-opening polymerization of L-lactide and 1,5-dioxepan-2-one forming a triblock copolymer, J. Polym. Sci. PartA: Polym. Chem., 38, 1774 (2000). https://doi.org/10.1002/(SICI)1099-0518(20000515)38:10<1774::AID-POLA620>3.0.CO;2-F
  54. J. R. Sarasua, R. Prud'homme, M. Wisniewski, A. Le Borgne, and N. Spassky, Crystallization and Melting Behavior of Polylactides, Macromolecules., 31, 3895 (1998). https://doi.org/10.1021/ma971545p
  55. D. Cohn and A. H. Salomon, Designing biodegradable multiblock PCL/PLA thermoplastic elastomers, Biomaterials., 26, 2297 (2005). https://doi.org/10.1016/j.biomaterials.2004.07.052
  56. J. Zhang, H. Wang, W. Jin, and J. Li, Synthesis of multiblock thermoplastic elastomers based on biodegradable poly (lactic acid) and polycaprolactone, Mater. Sci. Eng. C., 29, 889 (2009). https://doi.org/10.1016/j.msec.2008.08.002
  57. J. Shin, M. T. Martello, M. Shrestha, J. E. Wissinger, W. B. Tolman, and M. A. Hillmyer, Pressure-Sensitive Adhesives from Renewable Triblock Copolymers, Macromolecules., 44, 87 (2011). https://doi.org/10.1021/ma102216d
  58. C. Creton, Pressure-Sensitive Adhesives: An Introductory Course, MRSBull., 28, 434 (2003).
  59. K. Ch. Daoulas, D. N. Theodorou, A. Roos, and C. Creton, Experimental and Self-Consistent-Field Theoretical Study of Styrene Block Copolymer Self-Adhesive Materials, Macromolecules., 37, 5093 (2004). https://doi.org/10.1021/ma035383a
  60. K. Brown, J. C. Hooker, and C. Creton, Micromechanisms of Tack of Soft Adhesives Based on Styrenic Block Copolymers, Macromol. Mater. Eng., 287, 163 (2002). https://doi.org/10.1002/1439-2054(20020301)287:3<163::AID-MAME163>3.0.CO;2-P
  61. M. T. Martello and M. A. Hillmyer, Polylactide-Poly(6-methyl-$\varepsilon$-caprolactone)-Polylactide Thermoplastic Elastomers, Macromolecules., 44, 8537 (2011). https://doi.org/10.1021/ma201063t
  62. K. J. Hanley and T. P. Lodge, Effect of dilution on a block copolymer in the complex phase window, J. Polym. Sci., PartB: Polym. Phys., 36, 3101 (1998). https://doi.org/10.1002/(SICI)1099-0488(199812)36:17<3101::AID-POLB10>3.0.CO;2-X
  63. A. S. Zalusky, R. Olayo-Valles, J. H. Wolf, and M. A. Hillmyer, Ordered Nanoporous Polymers from Polystyrene−Polylactide Block Copolymers, J. Am. Chem. Soc., 124, 12761 (2002). https://doi.org/10.1021/ja0278584
  64. S. C. Schmidt and M. A. Hillmyer, Morphological behavior of model poly(ethylene-alt-propylene)-b-polylactide diblock copolymers, J. Polym. Sci., PartB: Polym. Phys., 40, 2364 (2002). https://doi.org/10.1002/polb.10291
  65. R. C. Pratt, B. G. G. Lohmeijer, D. A. Long, R.M. Waymouth, and J. L. Hedrick, Triazabicyclodecene: A Simple Bifunctional Organocatalyst for Acyl Transfer and Ring-Opening Polymerization of Cyclic Esters, J. Am. Chem. Soc., 128, 4556 (2006). https://doi.org/10.1021/ja060662+
  66. M. K. Kiesewetter, E. J. Shin, J. L. Hedrick, and R. M. Waymouth, Organocatalysis: Opportunities and Challenges for Polymer Synthesis, Macromolecules., 43, 2093 (2010). https://doi.org/10.1021/ma9025948
  67. M. T. Martello, A. Burns, and M. A. Hillmyer, Bulk Ring-Opening Transesterification Polymerization of the Renewable $\delta$-Decalactone Using an Organocatalyst, ACS Macro Lett., 1, 131 (2012). https://doi.org/10.1021/mz200006s
  68. M. Save, M. Schappacher, and A. Soum, Controlled Ring-Opening Polymerization of Lactones and Lactides Initiated by Lanthanum Isopropoxide, 1. General Aspects and Kinetics, Macromol. Chem. Phys., 203, 889 (2002). https://doi.org/10.1002/1521-3935(20020401)203:5/6<889::AID-MACP889>3.0.CO;2-O
  69. M. W. P. C. van Rossum, M. Alberda, and L. H. W. van der Plas, Tulipaline and tuliposide in cultured explants of tulip bulb scales, Phytochemistry., 49, 723 (1998). https://doi.org/10.1016/S0031-9422(98)00199-X
  70. Y. Kato, H. Yoshida, K. Shoji, Y. Sato, N. Nakajima, and S. Ogita, A facile method for the preparation of $\alpha$-methylene-$\gamma$-butyrolactones from tulip tissues by enzyme-mediated conversion, TetrahedronLett., 50, 4751 (2009). https://doi.org/10.1016/j.tetlet.2009.06.018
  71. L. E. Manzer, Catalytic synthesis of $\alpha$-methylene-$\gamma$-valerolactone: a biomass-derived acrylic monomer, Appl. Catal., A., 272, 249 (2004). https://doi.org/10.1016/j.apcata.2004.05.048
  72. M. Sauer, D. Porro, D. Mattanovich, and P. Branduardi, Microbial production of organic acids: expanding the markets, Trends Biotechnol., 26, 100 (2008). https://doi.org/10.1016/j.tibtech.2007.11.006
  73. Y. Xia and R. C. Larock, Vegetable oil-based polymeric materials: synthesis, properties, and applications, Green Chem., 12, 1893 (2010). https://doi.org/10.1039/c0gc00264j
  74. Y. Takeda, Y. Nakagawa, and K. Tomishige, Selective hydrogenation of higher saturated carboxylic acids to alcohols using a $ReO_x-Pd/SiO_2$ catalyst, Catal. Sci. Technol., 2, 2221 (2012). https://doi.org/10.1039/c2cy20302b
  75. M. Toba, S. I. Tanaka, S. I. Niwa, F. Mizukami, Z. Koppany, L. Guczi, K. Y. Cheah, and T. S. Tang, Synthesis of alcohols and diols by hydrogenation of carboxylic acids and esters over $Ru-Sn-Al_2O_3$ catalysts, Appl. Catal., A., 189, 243 (1999). https://doi.org/10.1016/S0926-860X(99)00281-1
  76. P. Dutta, B. Gogoi, N. N. Dass, and N. S. Sarma, Efficient organic solvent and oil sorbent co-polyesters: Poly-9-octadecenylacrylate/ methacrylate with 1-hexene, React. Funct. Polym., 73, 457 (2013). https://doi.org/10.1016/j.reactfunctpolym.2012.11.017
  77. H. F. Wong and G. D. Brown, $\beta$-Methoxy-$\gamma$-methylene-$\alpha$,$\beta$-unsaturated-$\gamma$-butyrolactones from Artabotryshexapetalus, Phytoc hemistry., 59, 99 (2002). https://doi.org/10.1016/S0031-9422(01)00433-2
  78. M. K. Akkapeddi, Poly($\alpha$-methylene-$\gamma$-butyrolactone) Synthesis, Configurational Structure, and Properties, Macromolecules., 12, 546 (1979). https://doi.org/10.1021/ma60070a002
  79. J. Mosnacek and K. Matyjaszewski, Atom Transfer Radical Polymerization of Tulipalin A: A Naturally Renewable Monomer, Macromolecules., 41, 5509 (2008). https://doi.org/10.1021/ma8010813
  80. J. Mosnacek, J. A. Yoon, A. Juhari, K. Koynov, and K. Matyjaszewski, Synthesis, morphology and mechanical properties of linear triblock copolymers based on poly($\alpha$-methylene-$\gamma$-butyrolactone), Polymer., 50, 2087 (2009). https://doi.org/10.1016/j.polymer.2009.02.037
  81. W. Jakubowski and K. Matyjaszewski, Activators Regenerated by Electron Transfer for Atom-Transfer Radical Polymerization of (Meth)acrylates and Related Block Copolymers, Angew. Chem. Int. Ed., 45, 4482 (2006). https://doi.org/10.1002/anie.200600272
  82. K. Min, H. Gao, and K. Matyjaszewski, Preparation of Homopolymers and Block Copolymers in Miniemulsion by ATRP Using Activators Generated by Electron Transfer (AGET), J. Am. Chem. Soc., 127, 3825 (2005). https://doi.org/10.1021/ja0429364
  83. C. J. Cavallito and T. H. Haskell, $\alpha$-Methylene Butyrolactone from Erythronium americanum, J. Am. Chem. Soc., 68, 2332 (1946). https://doi.org/10.1021/ja01215a057
  84. D. Zhang, M. A. Hillmyer, and W. B. Tolman, Catalytic Polymerization of a Cyclic Ester Derived from a "Cool" Natural Precursor, Biomacromolecules., 6, 2091 (2005). https://doi.org/10.1021/bm050076t
  85. J. Shin, Y. Lee, W. B. Tolman, and M. A. Hillmyer, Thermoplastic Elastomers Derived from Menthide and Tulipalin A, Biomacromolecules., 13, 3833 (2012). https://doi.org/10.1021/bm3012852
  86. X. Jiang, M. Vamvakaki, and R. Narain, Copper-Catalyzed Bimolecular Coupling of $\alpha$,$\omega$-Dibromide-Functionalized Poly($\gamma$-caprolactone), Macromolecules., 43, 3228 (2010). https://doi.org/10.1021/ma9028129
  87. C. W. Lee, S. Nakamura, and Y. Kimura, Synthesis and characterization of polytulipalin-g-polylactide copolymers, J. Polym. Sci., PartA: Polym. Chem., 50, 1111 (2012). https://doi.org/10.1002/pola.25867
  88. C. L. Wanamaker, M. J. Bluemle, L. M. Pitet, L. E. O'Leary, W. B. Tolman, and M. A. Hillmyer, Consequences of Polylactide Stereochemistry on the Properties of Polylactide-Polymenthide-Polylactide Thermoplastic Elastomers, Biomacromolecules., 10, 2904 (2009). https://doi.org/10.1021/bm900721p
  89. S. Wang, S. V. Kesava, E. D. Gomez, and M. L. Robertson, Sustainable Thermoplastic Elastomers Derived from Fatty Acids, Macromolecules., 46, 7202 (2013). https://doi.org/10.1021/ma4011846
  90. J. F. J. Coelho, E. Y. Carvalho, D. S. Marques, A. V. Popov, P. M. Goncalves, and M. H. Gil, Synthesis of Poly (lauryl acrylate) by Single-Electron Transfer/Degenerative Chain Transfer Living Radical Polymerization Catalyzed by $Na_2S_2O_4$ in Water, Macromol. Chem. Phys., 208, 1218 (2007). https://doi.org/10.1002/macp.200700015
  91. E. F. Jr. Jordan, Side-chain crystallinity. III. Influence of side-chain crystallinity on the glass transition temperatures of selected copolymers incorporating n-octadecyl acrylate or vinyl stearate, J. Polym. Sci., PartA-1: Polym. Chem., 9, 3367 (1971). https://doi.org/10.1002/pol.1971.150091122
  92. V. K. Konaganti and G. Madras, Photocatalytic and Thermal Degradation of Poly(methyl methacrylate), Poly(butyl acrylate), and Their Copolymers, Ind. Eng. Chem. Res., 48, 1712 (2009). https://doi.org/10.1021/ie801646y
  93. D. P. Chatterjee and B. M. Mandal, Triblock Thermoplastic Elastomers with Poly(lauryl methacrylate) as the Center Block and Poly (methyl methacrylate) or Poly(tert-butylmethacrylate) as End Blocks. Morphology and Thermomechanical Properties, Macromolecules., 39, 9192 (2006). https://doi.org/10.1021/ma061391q
  94. G. W. Coates and M. A. Hillmyer, A Virtual Issue of Macromolecules: "Polymers from Renewable Resources", Macromolecules., 42, 7987 (2009). https://doi.org/10.1021/ma902107w
  95. K. Satoh, D. H. Lee, K. Nagai, and M. Kamigaito, Precision Synthesis of Bio-Based Acrylic Thermoplastic Elastomer by RAFT Polymerization of Itaconic Acid Derivatives, Macromol. Rapid Commun., 35, 161 (2014). https://doi.org/10.1002/marc.201300638
  96. Y. Xu, Z. Petrovic, S. Das, and G. L. Wilkes, Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments, Polymer., 49, 4248 (2008). https://doi.org/10.1016/j.polymer.2008.07.027
  97. T. Lebarbe, E. Ibarboure, B. Gadenne, C. Alfos, and H. Cramail, Fully bio-based poly(L-lactide)-b-poly(ricinoleic acid)-b-poly(L-lactide) triblock copolyesters: investigation of solid-state morphology and thermo-mechanical properties, Polym. Chem., 4, 3357 (2013). https://doi.org/10.1039/c3py00300k

피인용 문헌

  1. Sustainable glucose-based block copolymers exhibit elastomeric and adhesive behavior vol.7, pp.33, 2016, https://doi.org/10.1039/C6PY00700G
  2. Strong, Resilient, and Sustainable Aliphatic Polyester Thermoplastic Elastomers vol.18, pp.6, 2017, https://doi.org/10.1021/acs.biomac.7b00283
  3. Physical Behavior of Triblock Copolymer Thermoplastic Elastomers Containing Sustainable Rosin-Derived Polymethacrylate End Blocks vol.5, pp.12, 2017, https://doi.org/10.1021/acssuschemeng.7b02676
  4. Enhanced Mechanical and Adhesion Properties in Sustainable Triblock Copolymers via Non-covalent Interactions vol.51, pp.7, 2014, https://doi.org/10.1021/acs.macromol.7b02248
  5. Renewable Thermosets and Thermoplastics from Itaconic Acid vol.7, pp.2, 2014, https://doi.org/10.1021/acssuschemeng.8b05766
  6. A comprehensive review of electrospinning block copolymers vol.15, pp.12, 2014, https://doi.org/10.1039/c8sm02484g
  7. Synthesis and self-assembly of biobased poly(limonene carbonate)-block-poly(cyclohexene carbonate) diblock copolymers prepared by sequential ring-opening copolymerization vol.21, pp.9, 2019, https://doi.org/10.1039/c9gc00250b
  8. Aliphatic Polyester Thermoplastic Elastomers Containing Hydrogen-Bonding Ureidopyrimidinone Endgroups vol.20, pp.7, 2014, https://doi.org/10.1021/acs.biomac.9b00411
  9. Recent progress of glycopolymer synthesis for biomedical applications vol.7, pp.12, 2019, https://doi.org/10.1039/c9bm01385g