DOI QR코드

DOI QR Code

Study on Big Data Utilization Plans of Medical Institutions

의료기관의 빅데이터 활용방안에 대한 연구

  • Received : 2013.12.02
  • Accepted : 2014.02.20
  • Published : 2014.02.28

Abstract

Due to rapid development of medical information, a huge amount of information is being accumulated. Desires to conduct clinical researches by using this information are increasing, and medical institutions are encountering problems of aging society and drastic increase of medical expenses. Utilization of Big Data as an alternative is now being emphasized. The purpose of this study is to examine informatization of medical institutions and suggest political implications for Big Data utilization plans. Data was collected through literature searches and interviews with medical information professionals of medical institutions, from September to November, 2013, for four months. As a result of the study, it could be found that the hospital information system is improving from patient management and administration to researches and information strategies. Thus, national supports for medical expense reduction as well as fostering professional manpower should be provided, considering establishment of the system for utilization of Big Data and efficient application of unstructured data.

의료정보의 급속한 발달로 인하여 막대한 양의 정보가 쌓이고 있다. 이러한 정보를 이용하여 임상연구를 하고자하는 욕구가 늘고 있으며, 고령화와 의료비의 가파른 상승을 해결해야하는 문제에 직면해 있다. 이에 대한 대안으로 빅데이터의 활용에 대한 목소리가 높다. 본 연구는 우리나라 의료기관들의 정보화 현황을 살피고 빅데이터 활용방안에 대한 정책적 시사점을 제공하고자 한다. 문헌조사와 의료기관의 의료정보전문가 면담을 통해 자료를 수집하였으며, 수집기간은 2013년 9월부터 2013년 11까지 4개월간 시행하였다. 연구결과 향후 병원정보시스템은 환자관리 및 행정에서 연구와 정보전략 측면으로 발전하고 있다. 따라서 빅데이터 활용을 위한 시스템 구축과 비정형 데이터의 효과적 활용을 고려하여 전문인력 양성과 더불어 의료비 절감을 위한 국가의 정책지원이 마련되어야 할 것이다.

Keywords

References

  1. Gartner. CEO Advisory : Big Data Equals Big Opportunity, 2011.
  2. http://www.nature.com/nature/journal/v455/n7209
  3. http://www.sciencemag.org/content/331/6018.toc
  4. Mckinsey Global Institute. Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute, 2011.
  5. Organization for Economic Cooperation and Development (OECD). OECD health data 2013 - frequently requested data. Downloadable Excel file. http://www.oecd.org/els/health-systems/oecdhealth data 2013-frequentlyrequesteddata.htm. Accessed July 29, 2013.
  6. Haux, R. Health information systems-past, present, future. International Journal of Medical Informatics, Vol. 75, No. 3, pp. 268-281, 2006. https://doi.org/10.1016/j.ijmedinf.2005.08.002
  7. Health Insurance Review & Assessment Service. Report on the informatization of healthcare provider, Korean Society of Medical Informatics. 2005.
  8. D. Yoon, B. C. Chang, S. W. Kang, H. Bae, R. W. Park, Adoption of electronic health records in Korean tertiary teaching and general hospitals, International Journal of Medical Informatics, Vol. 81, No. 3, pp. 196-203, 2012. https://doi.org/10.1016/j.ijmedinf.2011.12.002
  9. National Information Society Agency. 2012 National Informatization White Paper. Ministry of Public Administration and Security, 2012.
  10. http://www.rapportian.com/n_news/news/view.html?no=12844
  11. http://www.hkn24.com/news/articleView.html?idxno=126974
  12. McKinsey Global Institute, Game changers: Five opportunities for US growth and renewal, 2013.
  13. http://biz.newdaily.co.kr/news/article.html?no=20045
  14. J. G. Dewitt, P. M. Hampton, Development of a data warehouse at an academic health system: knowing a place for the first time. Acad Med, Vol. 80, No. 11, pp. 1019-1025, 2005. https://doi.org/10.1097/00001888-200511000-00009
  15. J. R. Schubart, J. S. Einbinder, Evaluation of a data warehouse in an academic health sciences center. International Journal of Medical Informatics, Vol. 30, No. 3, pp. 319-333, 2000.
  16. Silver M, Sakata T, Su, H. C, Herman C, Dolins S. B, O'Shea M. J. Case study: how to apply data mining techniques in a healthcare data warehouse. Journal of Healthcare Information Management, Vol. 15, No. 2, pp. 155-164, 2001.
  17. K. M. Kim, S.-S. Kim, D. J. Han, W. S. Yang, J. S. Park, S. K. Park, Hyperuricemia in kidney transplant recipients with intact graft function. Transplantation Proceedings, Vol. 42, No. 9, pp. 3562-3567, 2010. https://doi.org/10.1016/j.transproceed.2010.07.104
  18. IBM press release. Analytics: The real world use of big data, 2012.
  19. Hongro, L., Youngju, S., Jeongkyeom, K., Kiseok, C. & Jaesoo, K. A Study on the Analysis of Personal Information in the R&D Report. International Conference on Convergence Technology, Vol. 1, No. 1, pp. 165-167, 2012.
  20. President's Council on National ICT Strategies. Establishing a smart government by using big data. Seoul, Korea: President's Council on National ICT Strategies; 2011.
  21. S. M. Lee, R. W. Park, Basic Concepts and Principles of Data Mining in Clinical Practice. J Kor Soc Med Informatics, Vol. 15, No. 2, pp. 175-189, 2009.
  22. S. M. Back, Prospects and policy direction of the New industries to take advantage of healthcare using Big Data. KHIDI Brief, Vol. 84, pp. 1-20, 2013.
  23. http://www.ddaily.co.kr/news/news_view.php?uid=109365
  24. http://blogs.wsj.com/cio/2012/03/30/blue-cross-ex pects-cost-savings-from-big-data-dive/
  25. K. Jee, G. H. Kim, Potentiality of Big Data in the Medical Sector: Focus on How to Reshape the Healthcare System, Healthcare Informatics Research, Vol. 19, No. 2, pp. 79-85, 2013.
  26. T. B. Murdoch, A. S. Detsky, The inevitable application of big data to health care. Journal of American Medical Association, Vol. 309, No. 13, pp. 1351-1352, 2013. https://doi.org/10.1001/jama.2013.393
  27. H. R. Keun, Heart Diseases Prediction based on Data Mining Techniques. International Conference on Convergence Technology, Vol. 1, No. 1, pp. 1-6, 2012.

Cited by

  1. The Big Data Analysis and Medical Quality Management for Wellness vol.19, pp.12, 2014, https://doi.org/10.9708/jksci.2014.19.12.101
  2. Study on Big Data Utilization Plans in Mathematics Education vol.28, pp.4, 2014, https://doi.org/10.7468/jksmee.2014.28.4.573