DOI QR코드

DOI QR Code

Sensor Node Control Considering Energy-Efficiency in Wireless Sensor Networks

무선 센서 네트워크에서 에너지 효율성을 고려한 센서 노드 제어

  • Park, Hee-Dong (Dept. of Information & Communication, Korea Nazarene University)
  • 박희동 (나사렛대학교 정보통신학과)
  • Received : 2013.12.31
  • Accepted : 2014.02.20
  • Published : 2014.02.28

Abstract

The life-time and performance of a wireless sensor network is closely related to energy-efficiency of sensor nodes. In this paper, to increase energy-efficiency, each sensor node operates in one of three operational modes which are normal, power-saving, and inactive. In normal mode sensor nodes sense and transmit data with normal period, whereas sensor nodes in power-saving mode have three-times longer period. In inactive mode, sensor nodes do not sense and transmit any data, which makes the energy consumption to be minimized. Plus, the proposed algorithm can avoid unnecessary energy consumption by preventing transmitting duplicate sensed data. We implemented and simulated the proposed algorithm using Tiny OS based ZigbeX platfom and NS-2, respectively. Performance evaluation results show that the proposed algorithm can prolong sensor networks' lifespan by efficiently reducing energy consumption and its standard deviation of all sensor nodes.

무선 센서 네트워크의 수명 및 성능은 각 센서 노드들의 에너지 효율과 밀접한 관련이 있다. 본 논문에서는 센서 노드의 에너지 효율을 높이기 위해 센서 노드의 동작 상태를 정상, 절전, 및 비활성 모드로 나눈다. 정상 모드로 동작하는 센서 노드는 정상 주기로 센싱 및 데이터 전송을 하지만, 절전 모드에서는 그 주기를 늘임으로써 에너지 소비를 줄인다. 센싱 및 데이터 전송을 하지 않는 비활성 모드에서는 에너지 소비가 최소화된다. 또한, 제안 알고리즘은 센싱 데이터가 이전의 값과 동일할 경우 전송을 하지 않음으로써 불필요한 에너지 소비를 줄일 수 있다. 제안 알고리즘은 Tiny OS 기반의 ZigbeX 플랫폼에 구현되었으며, NS-2를 사용하여 그 성능을 분석하였다. 성능 분석결과 제안 알고리즘이 전체 센서 노드의 에너지 소비 및 그 표준편차를 효율적으로 줄임으로써 무선 센서 네트워크의 수명을 향상시킬 수 있음을 확인하였다.

Keywords

References

  1. B. M. Sadler, Fundamentals of Energy- Constrained Sensor Network Systems, IEEE Aerospace and Electronic System Magazine, Vol. 20, No. 8, pp. 17-35, 2005. https://doi.org/10.1109/MAES.2005.1499273
  2. V. Sharma, U. Mukherji, V. Joseph, S. Gupta, Optimal Energy Management Policies for Energy Harvesting Sensor Nodes, Vol. 9, No. 4, pp. 1326-1336, 2010. https://doi.org/10.1109/TWC.2010.04.080749
  3. S. R. Madden, M. J. Franklin, J. M. Hellerstein, W. Hong, "TinyDB: An Acquisitional Query Processing System for Sensor Networks," ACM Transactions on Database Systems, Vol. 30, No. 1, pp. 122-173, Mar. 2005. https://doi.org/10.1145/1061318.1061322
  4. Ruqiang Yan, Hanghang Sun, Yuning Qian, Energy-Aware Sensor Node Design with Its Application in Wireless Sensor Networks, IEEE Transactions on Instruments and Measurement, Vol. 62, No. 5, pp. 1183-1191, 2013. https://doi.org/10.1109/TIM.2013.2245181
  5. I. Koutsopoulos, S. Stanczak, The Impact of Transmit Rate Control on Energy-Efficient Estimation in Wireless Sensor Networks, IEEE Transactions on Wireless Communications, Vol. 11, No. 9, pp. 3261-3271, 2012. https://doi.org/10.1109/TWC.2012.062012.111392
  6. Jun-Pil Boo, Hyeon-Gyu Yang, Do-Hyeon Kim, Sensor Node Control Algorithm Based on TinyOS, The Journal of The Institute of Internet, Broadcasting and Communication, Vol. 8, No. 4, pp. 1-8, 2008.
  7. Kyoungbok Ji, Changhwa Kim, Sangkyung Kim, Implementation and Performance of Energy-efficient Node Management in Wireless Sensor Networks, Journal of the Korea Society for Simulation, Vol. 17, No. 4, pp. 123-131, 2008.
  8. Yangwei Wu, Xiang-Yang Li, YunHao Liu, Wei Lou, Energy-Efficient Wake-Up Scheduling for Data Collection and Aggregation, IEEE Transactions on Parallel and Distributed Systems, Vol. 21, No. 2, pp. 275-287, Feb. 2010. https://doi.org/10.1109/TPDS.2009.45
  9. R. Jurdak, A. G. Ruzzelli, G. M. P. O'Hare, Radio Sleep Mode Optimization in Wireless Sensor Networks, IEEE Transactions on Mobile Computing, Vol. 9, No. 7, pp. 955-968, July 2010. https://doi.org/10.1109/TMC.2010.35
  10. N. A. Pantazis, S. A. Nikolidakis, D. D. Vergados, Energy-Efficient Routing Protocols in Wireless Sensor Networks: A Survey, IEEE Communications Surveys & Tutorials, Vol. 15, No. 2, pp. 551-591, 2013. https://doi.org/10.1109/SURV.2012.062612.00084

Cited by

  1. A Study on a 3-Dimensional Positioning System over Indoor Wireless Environments vol.12, pp.11, 2014, https://doi.org/10.14400/JDC.2014.12.11.273