DOI QR코드

DOI QR Code

Study on Mechanical Properties of Geopolymer Concrete using Industrial By-Products

산업부산물을 사용한 지오폴리머 콘크리트의 역학적 특성에 관한 연구

  • Received : 2014.02.28
  • Accepted : 2014.03.28
  • Published : 2014.03.30

Abstract

This study examines the compressive strength, elastic modulus and splitting tensile strength of geopolymer concrete in order to evaluate its mechanical characteristics according to the admixing of fly ash and blast furnace slag. Moreover, identical tests are also conducted considering the amount of powder, the mixing ratio of alkali activator and the mixing ratio of silica fume for further comparative analysis considering various variables. The comparison with the formulae specified in Korean and overseas codes reveal that a mixing ratio of 18% is adequate for the alkali activator and that a replacement ratio of 5% by silica fume is recommended for silica fume. The elastic modulus of the geopolymer concrete appears to increase slightly with the increase of the compressive strength per variable and age and to be smaller than the values predicted by the formulae specified in Korean and overseas codes. In addition, the examination of the stress-strain curves shows that the geopolymer concrete exhibits ductile behavior compared to the conventional OPC. In view of the splitting tensile strength, high strength is observed for a powder content of $400kg/m^3$ and a replacement ratio of 18% by silica fume. The resulting ratio of the compressive strength to the splitting tensile strength is seen to range between 8.7 and 10.2%.

이 연구에서는 플라이애쉬와 고로슬래그를 혼합한 지오폴리머 콘크리트의 역학성능을 평가하기 위하여 압축강도, 탄성계수 및 쪼갬인장강도에 대해 검토하였다. 또한 다양한 변수에 대한 비교분석을 하기 위해 분체량, 알칼리 활성화제 첨가율 및 실리카퓸 혼입률에 대해서도 동일한 시험을 수행하였으며, 국내 외의 규준식과 비교하였다. 그 결과, 알칼리 활성화제의 첨가율은 18%가 적정하고 실리카퓸 치환율은 5%가 유리한 것으로 나타났다. 지오폴리머 콘크리트의 탄성계수는 변수 및 재령별로 압축강도가 증진됨에 따라 탄성계수가 소폭 상승되는 것으로 나타났으며, 국내 외 규준식에 의한 예측값보다 작은 것으로 나타났다. 또한 응력-변형률 선도를 분석한 결과, 지오폴리머 콘크리트가 일반 OPC 콘크리트 보다 연성적인 거동을 하는 것으로 분석되었다. 쪼갬인장강도는 분체량 $400kg/m^3$와 알칼리 활성화제 첨가율 18%에서 높은 강도를 보였으며, 압축강도에 대한 쪼갬인장강도의 비가 8.7~10.2% 수준인 것으로 분석되었다.

Keywords

References

  1. Cheriaf, M., Cavalcante Rocha, J., and Pera, J. (1999). Pozzolanic properties of pulverized coal combustion bottom ash, Cement and Concrete Research, 29(9), 1387-1391. https://doi.org/10.1016/S0008-8846(99)00098-8
  2. Davidovits, J. (1989). Geopolymers and geopolymeric materials, Thermal Analysis and Calorimetry, 35(2), 429-441. https://doi.org/10.1007/BF01904446
  3. Fernandez-Jimenez, A., Palomo, A., and Criado, M. (2005). Microstructure development of alkali-activated fly ash cement: a descriptive model, Cement and Concrete Research, 35(6), 1204-1209. https://doi.org/10.1016/j.cemconres.2004.08.021
  4. Han, S.H., Kim, J.K., Park, W.S., and Kim, D.H. (2001). Effect of Temperature and Aging on the Relationship Between Dynamic and Static Elastic Modulus of Concrete, Journal of the Korea Concrete Institute, 13(6), 610-618.
  5. Jo, B.W., Park, M.S., and Park, S.K. (2006). Strength Development and Hardening Mechanism of Alkali Activated Fly Ash Mortar, Journal of the Korea Concrete Institute, 18(4), 449-458. https://doi.org/10.4334/JKCI.2006.18.4.449
  6. Kang, S.T., Ryu, G.S., Koh, K.T., and Lee, J.H. (2011). Optimum Mix Design of Alkali-Activated Cement Mortar using Bottom Ash as Binder, Journal of the Korea Concrete Institute, 23(4), 487-494. https://doi.org/10.4334/JKCI.2011.23.4.487
  7. Koh, K.T., Ryu, G,S., and Lee, J.H. (2010). Properties of the flowability and strength of Cementless Alkali-Activated Mortar Using the Mixed Fly Ash and Ground Granulated Blast-Furnace Slag, Journal of Korea Recycled Construction Resources Institute, 5(4), 114-121.
  8. Kumar, R., Kumar, S., and Mehrotra, S.P. (2007). Towards sustainable solutions for fly ash through mechanical activation, Resources Conservation and Recycling, 52(2), 157-179. https://doi.org/10.1016/j.resconrec.2007.06.007
  9. Kwon, Y.H., Kwon, Y.H., and Lee, D.G. (2013). A Study on the Quality Properties of Alkali-activated cement free Mortar using Industrial by-products, Journal of Korea Recycled Construction Resources Institute, 1(1), 58-66. https://doi.org/10.14190/JRCR.2013.1.1.058
  10. Palacios, M., and Puertas, F. (2007). Effect of shrinkage reducing admixtures on the properties of alkali-activated slag mortars and pastes, Cement and Concrete Research, 37(5), 691-702. https://doi.org/10.1016/j.cemconres.2006.11.021
  11. Palomo, A., Grutzeck, M.W., and Blanco, M.T. (1999). Alkali-activated fly ashes a cement for the future, Cement and Concrete Research, 29(8), 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  12. Park, S.G., Kwon, S.J., Kim, Y.M., and Lee, S.S. (2013). Reaction Properties of Non-Cement Mortar Using Ground Granulated Blast Furnace Slag, The Korea Contents Association, 13(9), 392-399
  13. Ryu, G,S., Lee, Y.B., Koh, K.T., and Chung Y.S. (2013a). The mechanical properties of fly ash-based geopolymer concrete with alkali activators, Construction and Building Materials, 47, 409-418. https://doi.org/10.1016/j.conbuildmat.2013.05.069
  14. Ryu, G,S., Koh, K.T., and Lee, J.H. (2013b). Strength Development and Durability of Geopolymer Mortar Using the Combined Fly ash and Blast-Furnace Slag, Journal of Korea Recycled Construction Resources Institute, 1(1), 35-41. https://doi.org/10.14190/JRCR.2013.1.1.035
  15. Shi, C. (1996). Early microstructure development of activated lime-fly ash paste, Cement and Concrete Reasearch, 26(9), 1351-1359. https://doi.org/10.1016/0008-8846(96)00123-8
  16. Sofi, M., Van Deventer, J.S.J., Mendis, P.A., and Lukey, G.G. (2007). Engineering Properties of Inorganic Polymer Concretes (IPCs), Cement and Concrete Research, 37(2), 251-257. https://doi.org/10.1016/j.cemconres.2006.10.008
  17. Temuujin, J., Williams, R.P., and Van Riessen, A. (2009). Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature, Journal of Materials Processing Technology, 209(12-13), 5276-5280. https://doi.org/10.1016/j.jmatprotec.2009.03.016
  18. Wild, S., Sabir, B.B., and Khatib, J.M. (1995). Factors Influencing Strength Development of Concrete Containing Silica Fume, Cement and Concrete Reasearch, 25(7), 1567-1580. https://doi.org/10.1016/0008-8846(95)00150-B
  19. Zhao, F.Q., Ni, W., Wang, H.J., and Liu, H.J. (2007). Activated fly ash/slag blended cement, Resources, Conservation and Recycling, 52(2), 303-313. https://doi.org/10.1016/j.resconrec.2007.04.002

Cited by

  1. Long-Term Durability Estimation of Cementless Concrete Based on Alkali Activated Slag vol.4, pp.2, 2016, https://doi.org/10.14190/JRCR.2016.4.2.149
  2. Resistance against Chloride Ion and Sulfate Attack of Cementless Concrete vol.6, pp.2, 2015, https://doi.org/10.11004/kosacs.2015.6.2.063