DOI QR코드

DOI QR Code

Depigmenting Effects of Esculetin and Esculin Isolated from Fraxinus rhynchophyllaHance

물푸레나무로부터 분리된 Esculetin와 Esculin의 미백 효능

  • 홍용덕 ((주)아모레퍼시픽 기술연구원) ;
  • 남미희 ((주)아모레퍼시픽 기술연구원) ;
  • 이창석 ((주)아모레퍼시픽 기술연구원) ;
  • 신송석 ((주)아모레퍼시픽 기술연구원) ;
  • 박영호 ((주)아모레퍼시픽 기술연구원)
  • Received : 2013.10.07
  • Accepted : 2013.10.21
  • Published : 2014.03.31

Abstract

Stem bark extracts of Fraxinus rhynchophylla Hance were found to contain two major bioactive components, esculetin and esculin. Esculetin substantially inhibited melanogenesis in B16F10 melanoma cells, with an $IC_{50}$ value of $2.8{\mu}M$, and reduced melanin synthesis in Melan-A cells. Moreover, esculetin suppressed melanin biosynthesis by inhibiting mushroom tyrosinase activity, with an $IC_{50}$ value of $40{\mu}M$. Taken together, these results suggest that esculetin could serve as an effective skin-lightening agent that inhibits melanin production by regulating the activity of melanogenic enzymes.

물푸레나무 수피 추출물은 주요 생활성 물질로서 esculetin과 esculin을 포함하고 있다. 이 가운데, Esculetin은 B16F10 melanoma cells에서 $IC_{50}$ value $2.8{\mu}M$의 아주 좋은 melanogenesis 억제 활성을 나타내며, 이를 통해 Melan-A cell에서 melanin 합성을 감소시킨다. 더욱이, esculetin은 mushroom tyrosinase에서도 $IC_{50}$ value $40{\mu}M$의 억제 활성을 나타내어 melanin biosynthesis를 저해한다. 위의 결과들로서, 우리는 melanogenic enzyme 활성 조절에 의해 melanin 생성을 저해하는 효과적인 피부미백 물질로서 esculetin을 제안하고자 한다.

Keywords

References

  1. V. J. Hearing, Biochemical control of melanogenesis and melanosomal organization, J. Investig. Dermatol. Symp. Proc., 4, 24 (1999). https://doi.org/10.1038/sj.jidsp.5640176
  2. M. Tsatmali, J. Ancans, and A. J. Thody, Melanocyte function and its control by melanocortin peptides, J. Histochem. Cytochem., 50, 125 (2002). https://doi.org/10.1177/002215540205000201
  3. A. K. Gupta, M. D. Gover, K. N. Nouri, and S. Taylor, The treatment of melasma: a review of clinical trials, J. Am. Acad. Dermatol., 55, 1048 (2006). https://doi.org/10.1016/j.jaad.2006.02.009
  4. S. R. Dalton, T. L. Gardner, L. F. Libow, and D. M. Elston, Contiguous lesions in lentigo maligna, J. Am. Acad. Dermatol., 52, 859 (2005). https://doi.org/10.1016/j.jaad.2004.11.063
  5. S.-Y. SeO, V. K. Sharma, and N. Sharma, Mushroom Tyrosinase: Recent Prospects, J. Agric. Food Chem., 51, 2837 (2003). https://doi.org/10.1021/jf020826f
  6. Y.-J. Kim and H. Uyama, Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future, Cell. Mol. Life Sci., 62, 1707 (2005). https://doi.org/10.1007/s00018-005-5054-y
  7. V. D. Marmol and F. Beermann, Tyrosinase and related proteins in mammalian pigmentation, FEBS Lett., 381, 165 (1996). https://doi.org/10.1016/0014-5793(96)00109-3
  8. C. J. Smith, K. B. O'Hare, and J. C. Alle, Selective cybtoxicity of hydroquinone for melanoma derived cells is mediated by tyrosinase activity but independent of melanin content, Pigment Cell Res., 1, 386 (1988). https://doi.org/10.1111/j.1600-0749.1988.tb00140.x
  9. K-K. Song, H. Huang, P. Han, C-L. Zhang, Y. Shi, and Q-X. Chen, Inhibitory effects of cis- and trans-isomers of 3,5-dihydroxystilbene on the activity of mushroom tyrosinase, Biochem. Biophys. Res. Commun., 342, 1147 (2006). https://doi.org/10.1016/j.bbrc.2005.12.229
  10. N. Fujimoto, H. Watanabe, T. Nakatani, G. Roy, and A. Ito, Induction of thyroid tumours in (C57BL/6N ${\times}$ C3H/N)F1 mice by oral administration of kojic acid, Food Chem. Toxicol., 36, 697 (1998). https://doi.org/10.1016/S0278-6915(98)00030-1
  11. A. M. Korner and J. Pawelek, Dopachrome Conversion: A Possible Control Point in Melanin Biosynthesis, J. Invest. Dermatol., 75, 192 (1980). https://doi.org/10.1111/1523-1747.ep12522650
  12. Y. Mishima, S. Hatta, Y. Ohyama, and M. Inazu, Induction of melanogenesis suppression: cellular pharmacology and mode of differential action, Pigment Cell Res., 1, 367 (1988). https://doi.org/10.1111/j.1600-0749.1988.tb00136.x
  13. K. Maeda and M. Fukuda, Arbutin: mechanism of its depigmenting action in human melanocyte culture, J. Pharmacol. Exp. Ther., 276, 765 (1996).
  14. L. M. Liu, L. Chen, R. H. Wang, Q. Yang, X. G. Weng, and L. Wang, Study on finger-print of Cortex Fraxini with HPLC, Zhongguo Zhongyao Zazhi, 33, 2932 (2008).
  15. H. Wang, Y. Dou, J. Tian, F. Li, S. Wang, and Z. Wang, Research on medical specialty of traditional Chinese medicines using dot-Immunoblotting method based on polyclonal antibody prepared from traditional Chinese medicines with hot/cold nature, Zhongguo Zhongyao Zazhi, 34, 438 (2009).
  16. Y. Masamoto, H. Ando, Y. Murata, Y. Shimoishi, M. Tada, and K. Takahata, Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euphorbia lathyris L., Biosci. Biotechnol. Biochem., 67(3), 631 (2003). https://doi.org/10.1271/bbb.67.631
  17. A. N. Jain, Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine, J. Med. Chem., 46, 499 (2003). https://doi.org/10.1021/jm020406h
  18. Y. Matoba, T. Kumagai, A. Yamamoto, H. Yoshitsu, and M. Sugiyama, Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis, J. Biol. Chem., 281, 8981 (2006). https://doi.org/10.1074/jbc.M509785200