DOI QR코드

DOI QR Code

다공성 La0.8Sr0.2CuO3 전극을 이용한 이산화탄소의 전기화학적 환원 반응

Electrochemical Reduction of Carbon Dioxide Using Porous La0.8Sr0.2CuO3 Electrode

  • 김정렬 (동국대학교 화공생물공학과) ;
  • 이홍주 (동국대학교 화공생물공학과) ;
  • 박정훈 (동국대학교 화공생물공학과)
  • Kim, Jung Ryoel (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Lee, Hong Joo (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Park, Jung Hoon (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 투고 : 2013.10.31
  • 심사 : 2013.12.29
  • 발행 : 2014.04.01

초록

전극 촉매 물질인 페롭스카이트 형 $La_{0.8}Sr_{0.2}CuO_3$ 분말을 시트릭산 합성법으로 제조하였다. 이렇게 제조한 $La_{0.8}Sr_{0.2}CuO_3$ 분말과 지지전도체로 탄소 및 소수성 결합제로 polytetrafluoroethylene(PTFE)를 혼합하여 다공성 전극을 제조하였다. 이산화탄소를 0.1, 0.5, 1.0M KOH 전해액에 용해하여 5, $10^{\circ}C$의 반응온도에서 -1.5~-2.5 V(vs. Ag/AgCl)의 인가전위로 전기화학 실험을 수행한 결과, 액상생성물은 온도와 상관없이 메탄올, 에탄올, 2-프로판올, 1,2-부탄올이 얻어진 반면 기상생성물로는 $5^{\circ}C$에서는 메탄, 에탄, 에틸렌이 $10^{\circ}C$에서는 메탄, 에탄, 프로판이 생성되었다. 전체 패러데이 효율의 관점에서 $CO_2$ 환원의 최적 인가전압은 기상의 경우 높은 값을(-2.0, -2.2 V) 보였고, 액상의 경우는 전해액 농도와 반응온도에 상관없이 낮은 전압(-1.5 V)임을 알 수 있었다.

$La_{0.8}Sr_{0.2}CuO_3$ powder with the perovskite structure was prepared as electrode catalyst using citrate method. Porous electrode was made with as-prepared catalyst, carbon as supporter and polytetrafluoroethylene (PTFE) as hydrophobic binder. As results of potentiostatic electrolysis with potential of -1.5~-2.5 V vs. Ag/AgCl in 0.1, 0.5 and 1.0 M KOH at 5 and $10^{\circ}C$ on the porous electrode, liquid products were methanol, ethanol, 2-propanol and 1, 2-butanol regardless reaction temperature, while gas products were methane, ethane and ethylene at $5^{\circ}C$, and methane, ethane and propane at $10^{\circ}C$ respectively. Optimal potentials for $CO_2$ reduction in the view of over all faradic efficiency were high values (-2.0 and -2.2 V) for gas products whereas low potential (-1.5 V) for liquid products regardless of concentration and temperature.

키워드

참고문헌

  1. Park, J. H., Park, T. S., Baek, I. H. and Park, S., "The Status of Carbon Dioxide Capture and Storage Technology," Polyurethane, 3(1), 28-33(2010).
  2. Park, J. H. and Baek, I. H., "Status and Prospect of Pre-combustion $CO_2$ Capture Technology," KIC News, 12(1), 3-14(2009).
  3. Park, J. H. and Kim, J. P., "Research Trend of Oxygen Separation using Ion Transport Membrane," KIC News, 14(3), 14-24(2011).
  4. Yi, C., "Advances of Carbon Capture Technology," KIC News, 12(1), 30-42(2009).
  5. Seo, B., Kim, J., Ahn, H. and Lee, K.-H., "The State of the Art of Membrane Technology for Separation of Carbon Dioxide from Flue Gas," KIC News, 14(3), 1-13(2011).
  6. Vaska, L., Schreiner, S., Felty, R. A. and Yu, J. Y., "Catalytic Reduction of Carbon Dioxide to Methane and Other Species Via Formamide Intermediation: Synthesis and Hydrogenation of HC(O)$NH_2$ in the Presence of $[Ir(Cl)(CO)(Ph_3P)_2]$," J. Mol. Catal. 52(2), 11-16(1989). https://doi.org/10.1016/0304-5102(89)80020-3
  7. Kojima, F., Aida, T. and Inoue, S., "Fixation and Activation of Carbon Dioxide on Aluminum Porphyrin. Catalytic Formation of a Carbamic Ester from Carbon Dioxide, Amine, and Epoxide," J. Am. chem. Soc., 108(3), 391-395(1986). https://doi.org/10.1021/ja00263a008
  8. Halmann, M., "Chemical Fixation of Carbon DioxideMethods for Recycling $CO_2$ into Useful Products," CRC Press, Boca Raton (1993).
  9. Parkinson, B. A. and Weaver, P. F., "Photoelectrochemical Pumping of Enzymatic $CO_2$ Reduction," Nature, 309, 148-149(1984). https://doi.org/10.1038/309148a0
  10. Sullivan, B. P., Krist, K. and Guard, H. E., "Electrochemical and Electrocatalytic Reactions of Carbon Dioxide," Elsevier, Amsterdam(1993).
  11. Wasmus, S., Cattaneo, E. and Vielstich, W., "Reduction of Carbon Dioxide to Methane and Ethene-an on-line MS Study with Rotating Electrodes," Electrochim. Acta, 35(4), 771-775(1990). https://doi.org/10.1016/0013-4686(90)90014-Q
  12. K. W. Jr Frese, J., "Electrochemical Reduction of $CO_2$ at Intentionally Oxidized Copper Electrodes," Electrochem. Soc. 138(11), 3338-3344(1991). https://doi.org/10.1149/1.2085411
  13. Taguchi, S. and Aramata, A., "Surface-structure Sensitive Reduced $CO_2$ Formation on Pt Single Crystal Electrodes in Sulfuric Acid Solution," Electrochim. Acta, 39(17), 2533-2537(1994). https://doi.org/10.1016/0013-4686(94)00233-9
  14. Kyriacou, G. and Anagnostopoulos, A., "Electroreduction of $CO_2$ on Differently Prepared Copper Electrodes: The Influence of Electrode Treatment on the Current Efficiences," J. Electroanal. Chem., 322(1-2), 233-246(1992). https://doi.org/10.1016/0022-0728(92)80079-J
  15. Hara, K., Tsuneto, A., Kudo, A. and Sakata, T., "Electrochemical Reduction of $CO_2$ on a Cu Electrode under High Pressure Factors that Determine the Product Selectivity," J. Electrochem. Soc., 141(8), 2097-2103(1994). https://doi.org/10.1149/1.2055067
  16. Hori, Y., Murata, A. and Takahashi, R., "Formation of Hydrocarbons in the Electrochemical Reduction of Carbon Dioxide at a Copper Electrode in Aqueous Solution," J. Chem. Soc. Faraday Trans. I, 85, 2309-2326(1989). https://doi.org/10.1039/f19898502309
  17. Cook, R. L., MacDuff, R. C. and Sammells, A. F., "On the Electrochemical Reduction of Carbon Dioxide at In Situ Electrodeposited Copper," J. Electrochem. Soc., 135(6), 1320-1326(1988). https://doi.org/10.1149/1.2095972
  18. Noda, H., Ikeda, S., Oda, Y., Imai, K., Maeda, M. and Ito, K., "Electrochemical Reduction of Carbon Dioxide at Various Metal Electrodes in Aqueous Potassium Hydrogen Carbonate Solution," Bull. Chem. Soc. Jpn., 63, 2459-2462(1990). https://doi.org/10.1246/bcsj.63.2459
  19. Bandi, A., "Electrochemical Reduction of Carbon Dioxide on Conductive Metallic Oxides," J. Electrochem. Soc., 137(7), 2157-2160(1990). https://doi.org/10.1149/1.2086903
  20. Katoh, A., Uchida, H., Shibata, M. and Watanabe, M., "Design of Electrocatalyst for $CO_2$ Reduction V. Effect of the Microcrystalline Structures of CuSn and CuZn Alloys on the Electrocatalysis of Reduction," J. Electrochem. Soc., 141(8), 2054-2058(1994). https://doi.org/10.1149/1.2055059
  21. Shibata, M., Yoshida, K. and Furuya, N., "Modification of the Lithium Metal Surface by Nonionic Polyether Surfactants: Quartz Crystal Microbalance Studies," J. Electrochem. Soc., 145(7), 2340-2348(1998). https://doi.org/10.1149/1.1838640
  22. Park, J. H., Lee, S. I., Wee, J. H., Lim, J. H., Lee, J. K. and Chun, H. S., "A Study on Electrochemical Reduction of $CO_2$ by using the Perovskite Electrode," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 36, 751-758(1998).
  23. Kudo, T., Obayashi, H. and Yoshida, M., "Rare Earth Cobaltites as Oxygen Electrode Materials for Alkaline Solution," J. Electrochem. Soc., 124(3), 321-325(1977). https://doi.org/10.1149/1.2133297
  24. Shimizu, Y., Uemura, K., Matsuda, H., Miura, N. and Yamazoe, N., "Bi-Functional Oxygen Electrode Using Large Surface Area $La_{1-x}Ca_xCoO_3$ for Rechargeable Metal-Air Battery," J. Electrochem. Soc., 137(11), 3430-3433(1990). https://doi.org/10.1149/1.2086234
  25. Watanabe, M., Tomikawa, M. and Motoo, S., "Experimental Analysis of the Reaction Layer Structure in a Gas Diffusion Electrode," J. Electroanal. Chem., 195(1), 81-93(1985). https://doi.org/10.1016/0022-0728(85)80007-3
  26. Bard, A. J. and Faulkner, L. R., "Electrochemical Methods: Fundamentals and Applications," p16-38, Wiley & Sons, New York (1980).
  27. Tejuca, L. G. and Fierro, J. L. G., "Properties and Applications of Perovskite-Type Oxides," Marcel Dekker, New York(1993).
  28. Ponec, V. "Selectivity in Catalysis by Alloys," Catal. Rev., 11, 41-70(1975). https://doi.org/10.1080/01614947508079981
  29. Watanabe, M., Tomikawa, M. and Motoo, S., "Experimental Analysis of the Reaction Layer Structure in a Gas Diffusion Electrode," J. Electroanal. Chem., 195, 81-93(1985). https://doi.org/10.1016/0022-0728(85)80007-3
  30. Choi, C., Jung, Y., Kim, N., Pak, D., Chung, K., Kim, L. and Kwon, Y., "Analysis of Trace Copper Metal at The Electrode Consisting of Carbon Nanotube," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50(5), 933-937(2012). https://doi.org/10.9713/kcer.2012.50.5.933