DOI QR코드

DOI QR Code

일정한 응고속도를 갖는 2성분 응고에서 조성 대류의 특성 및 안정성

Characteristics and Stability of Compositional Convection in Binary Solidification with a Constant Solidification Velocity

  • 황인국 (수원대학교 공과대학 화학공학과)
  • Hwang, In Gook (Department of Chemical Engineering, The University of Suwon)
  • 투고 : 2013.10.31
  • 심사 : 2013.12.29
  • 발행 : 2014.04.01

초록

2성분 응고계에서 다공성 mush 층에서의 조성 대류는 생성되는 제품의 질에 영향을 준다. 본 연구에서는 일정한 속도로 응고되는 mush 층을 고려하였다. 선형 안정성 이론을 사용하여 mush 층에 대한 교란방정식을 유도하였고, 기본상태 온도장과 mush 층에서 기공률의 분포를 수치해법으로 조사하였다. 과열량이 클 때 mush 층의 두께는 열경계층의 두께에 비해 상대적으로 작았다. 과열량이 감소함에 따라 mush 층의 두께를 기준으로 한 Rayleigh 수는 증가하였고, mush 층은 조성 대류에 대해 안정해졌다. mush 층의 윗면에 등온조건을 적용한 경우보다 온도 및 열속의 연속조건을 액체-mush 계면에 적용한 경우에 임계 Rayleigh 수가 더 작게 얻어졌다.

In binary solidification compositional convection in a porous mushy layer influences the quality of the final products. We consider the mushy layer solidifying from below with a constant solidification velocity. The disturbance equations for the mushy layer are derived using linear stability theory. The basic-state temperature fields and the distribution of the porosity in the mushy layer are investigated numerically. When the superheat is large, the thickness of the mushy layer is relatively small compared to the thickness of the thermal boundary layer. With decreasing the superheat the critical Rayleigh number based on the thickness of the mushy layer increases and the mushy layer becomes stable to the compositional convection. The critical Rayleigh number obtained from the continuity conditions of temperature and heat flux at the mush-liquid interface is smaller than that from the isothermal condition at the upper boundary of the mushy layer.

키워드

참고문헌

  1. Glicksman, M. E., Coriell, S. R. and McFadden, G. B., "Interaction of Flows with the Crystal-Melt Interface," Ann. Rev. Fluid Mech., 18, 307-335(1986). https://doi.org/10.1146/annurev.fl.18.010186.001515
  2. Sample, A. K. and Hellawell, A., "The Mechanisms of Formation and Prevention of Channel Segregation during Alloy Solidification," Metall. Trans., A15, 2163-2173(1988).
  3. Worster, M. G., "Natural Convection in a Mushy Layer," J. Fluid Mech., 224, 335-359(1991). https://doi.org/10.1017/S0022112091001787
  4. Davis, S. H., "Hydrodynamic Interactions in Directional Solidification," J. Fluid Mech., 212, 241-262(1990). https://doi.org/10.1017/S002211209000194X
  5. Amberg, G. and Homsy, G. M., "Nonlinear Analysis of Buoyant Convection in Binary Solidification with Application to Channel Formation," J. Fluid Mech., 252, 79-98(1993). https://doi.org/10.1017/S0022112093003672
  6. Jackson A. J., "Constitutional Supercooling Surface Roughening," J. Crys. Growth, 264, 519-529(2004). https://doi.org/10.1016/j.jcrysgro.2003.12.074
  7. Tait, S. and Jaupart, C., "Compositional Convection in a Reactive Crystalline Mush and the Evolution of Porosity," J. Geophys. Res., 97, 6735-6756(1992). https://doi.org/10.1029/92JB00016
  8. Worster, M. G., "Instabilities of the Liquid and Mushy Regions during Solidification of Alloys," J. Fluid Mech., 237, 649-669(1992). https://doi.org/10.1017/S0022112092003562
  9. Anderson, D. M. and Worster, M. G., "Weakly Nonlinear Analysis of Convection in Mushy Layers during the Solidification of Binary Alloys," J. Fluid Mech., 302, 307-331(1995). https://doi.org/10.1017/S0022112095004113
  10. Okhuysen, B. S. and Riahi, D. N., "On the Buoyant Convection in Binary Solidification," Theoretical and Applied Mechanics (TAM) Technical Reports, 1059, Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign(2005). https://www.ideals.illinois.edu/handle/2142/317.
  11. Okhuysen, B. S. and Riahi, D. N., "On Weakly Nonlinear Convection in Mushy Layers During Solidification of Alloys," J. Fluid Mech., 596, 143-167(2008).
  12. Bhatta, D., Muddamallappa, M. S. and Riahi, D. N., "On Perturbation and Marginal Stability Analysis of Magneto-Convection in Active Mushy Layer," Trans. Porous Media, 82, 385-399(2010). https://doi.org/10.1007/s11242-009-9433-y
  13. Hwang, I. G. and Choi, C. K., "Natural Convection during Directional Solidification of a Binary Mixture," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 47, 174-178(2009).
  14. Hwang, I. G., "Stability Analysis of Compositional Convection in a Mushy Layer in the Time-dependent Solidification System," Korean J. Chem. Eng., 30(5), 1023-1028(2013). https://doi.org/10.1007/s11814-013-0013-z
  15. Kim, M. C., "Analysis of Onset of Buoyancy-driven Convection in a Fluid Layer Saturated in Anisotropic Porous Media by the Relaxed Energy Method," Korean J. Chem. Eng., 30(6), 1207-1212(2013). https://doi.org/10.1007/s11814-013-0039-2

피인용 문헌

  1. The Onset of Tayler-Görtler Vortices in Impulsively Decelerating Circular Flow vol.53, pp.5, 2015, https://doi.org/10.9713/kcer.2015.53.5.609