DOI QR코드

DOI QR Code

액적 기반의 미세유체 시스템을 이용한 초고속 대용량 스크리닝

Droplet-based Microfluidic Device for High-throughput Screening

  • Jeong, Heon-Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Noh, Young-Moo (Department of Chemical Engineering, Chungnam National University) ;
  • Jang, Sung-Chan (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • 투고 : 2013.08.27
  • 심사 : 2013.09.25
  • 발행 : 2014.04.01

초록

액적기반의 미세유체 시스템은 마이크로 시험관으로서 화학, 생물학 연구에 적용하기 위해 개발되었다. 미세유체 시스템에서 피코부피(picoliter)의 매우 작은 액적은 소형화된 시스템 내에서 잘 정형화 되고 구획화된 반응기로 제공되어 진다. 매우 작은 액적에서의 반응은 자동화된 초고속 대용량 스크리닝 시스템을 통하여 저가이면서 고효율적으로 수행될 수 있다. 본 총설에서는 액적 기반의 미세유체시스템의 기능들인 액적 형성, 정교한 액적 제어, 다양한 응용분야에 대해 소개하고자 한다. 또한 화학적, 생물학적 새로운 응용분야에 관해 알아보고, 기존의 방법과 비교하여 액적기반의 미세유체 시스템이 갖는 장점에 관해 논의하고자 한다.

Droplet based microfluidic systems have been developed for the application of biological and chemical research field. A picoliter droplet in microfluidic device provides a compartmentalized and well-defined reactor in miniaturized system. The microfluidic system with small droplets can reduce reagent cost and enhance efficiency through automated high-throughput screening system. In this review, we summarize the functionality of droplet based microfluidic system including droplet generation, precise droplet control, and various applications. In addition, this article reviews current applications in chemistry and biology, and discuss advantages of droplet based microfluidics compared with conventional manner.

키워드

참고문헌

  1. Huebner, A., S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. Demello, "Microdroplets: A Sea of Applications?," Lab Chip, 8(8), 1244-1254(2008). https://doi.org/10.1039/b806405a
  2. Theberge, A. B., Courtois, F., Schaerli, Y., Fischlechner, M., Abell, C., Hollfelder, F. and Huck, W. T. S., "Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology," Angew. Chem. Int. Edit., 49(34), 5846-5868(2010). https://doi.org/10.1002/anie.200906653
  3. Kovarik, M. L., Gach, P. C., Ornoff, D. M. Wang, Y. L., Balowski, J., Farrag, L. and Allbritton, N. L., "Micro Total Analysis Systems for Cell Biology and Biochemical Assays," Anal. Chem., 84(2), 516-540(2012). https://doi.org/10.1021/ac202611x
  4. Whitesides, G. M., "The Origins and the Future of Microfluidics," Nature, 442(7101), 368-373(2006). https://doi.org/10.1038/nature05058
  5. Song, H. M. and Lee, C. S., "Simple Fabrication of Functionalized Surface with Polyethylene Glycol Microstructure and Glycidyl Methacrylate Moiety for the Selective Immobilization of Proteins and Cells," Korean J. Chem. Eng., 25(6), 1467-1472(2008). https://doi.org/10.1007/s11814-008-0241-9
  6. Lee, J. H., Kim, H. E., Im, J. H., Bae, Y. M., Choi, J. S., Huh, K. M. and Lee, C. S., "Preparation of Orthogonally Functionalized Surface Using Micromolding in Capillaries Technique for the Control of Cellular Adhesion," Colloids Surf. B: Biointerfaces, 64(1), 126-134(2008). https://doi.org/10.1016/j.colsurfb.2008.01.015
  7. Chiu, D. T., Lorenz, R. M. and Jeffries, G. D. M., "Droplets for Ultrasmall-Volume Analysis," Anal. Chem., 81(13), 5111-5118(2009). https://doi.org/10.1021/ac900306q
  8. Choi, C. H., Prasad, N., Lee, N. R. and Lee, C. S., "Investigation of Microchannel Wettability on the Formation of Droplets and Efficient Mixing in Microfluidic Devices," Biochip J., 2(1), 27-32 (2008).
  9. Teh, S. Y., Lin, R., Hung, L. H. and Lee, A. P., "Droplet Microfluidics," Lab Chip, 8(2), 198-220(2008). https://doi.org/10.1039/b715524g
  10. Jeong, H. H., Lee, S. H., Kim, J. M., Kim, H. E., Kim, Y. G., Yoo, J. Y., Chang, W. S. and Lee, C. S., "Microfluidic Monitoring of Pseudomonas Aeruginosa Chemotaxis Under the Continuous Chemical Gradient," Biosens. Bioelectron., 26(2), 351-6(2010). https://doi.org/10.1016/j.bios.2010.08.006
  11. Kim, K. P., Kim, Y. G., Choi, C. H., Kim, H. E., Lee, S. H., Chang, W. S. and Lee, C. S., "In situ Monitoring of Antibiotic Susceptibility of Bacterial Biofilms in a Microfluidic Device," Lab Chip, 10(23), 3296-9(2010). https://doi.org/10.1039/c0lc00154f
  12. Cira, N. J., Ho, J. Y., Dueck, M. E. and Weibel, D. B., "A Selfloading Microfluidic Device for Determining the Minimum Inhibitory Concentration of Antibiotics," Lab Chip, 12(6), 1052-1059(2012). https://doi.org/10.1039/c2lc20887c
  13. Kaigala, G. V., Hoang, V. N., Stickel, A., Lauzon, J., Manage, D., Pilarski, L. M. and Backhouse, C. J., "An Inexpensive and Portable Microchip-Based Platform for Integrated RT-PCR and Capillary Electrophoresis," Analyst, 133(3), 331-338(2008). https://doi.org/10.1039/b714308g
  14. Jeong, H. H., Lee, S. H. and Lee, C. S., "Pump-less Static Microfluidic Device for Analysis of Chemotaxis of Pseudomonas Aeruginosa Using Wetting and Capillary Action," Biosens. Bioelectron., 47, 278-84(2013). https://doi.org/10.1016/j.bios.2013.03.031
  15. Jung, J. H., Choi, C. H., Hwang, T. S. and Lee, C. S., "Efficient In situ Production of Monodisperse Polyurethane Microbeads in Microfluidic Device using Increase of Residence Time of Droplets," Biochip J., 3(1), 44-49(2009).
  16. Garstecki, P., Fuerstman, M. J., Stone, H. A. and Whitesides, G. M., "Formation of Droplets and Bubbles in a Microfluidic Tjunction - scaling and Mechanism of Break-up," Lab Chip, 6(3), 437-446(2006). https://doi.org/10.1039/b510841a
  17. Song, H. and Ismagilov, R. F., "Millisecond Kinetics on a Microfluidic Chip Using Nanoliters of Reagents," J. Am. Chem. Soc., 125(47), 14613-14619(2003). https://doi.org/10.1021/ja0354566
  18. Clausell-Tormos, J., Lieber, D., Baret, J. C., El-Harrak, A., Miller, O. J., Frenz, L., Blouwolff, J., Humphry, K. J., Koster, S., Duan, H., Holtze, C., Weitz, D. A., Griffiths, A. D. and Merten, C. A., "Droplet-based Microfluidic Platforms for the Encapsulation and Screening of Mammalian Cells and Multicellular Organisms (vol 15, pg 427, 2008)," Chem. Biol., 15(8), 875-875 (2008). https://doi.org/10.1016/j.chembiol.2008.08.004
  19. Jung, S. Y., Liu, Y. and Collier, C. P., "Fast Mixing and Reaction Initiation Control of Single-enzyme Kinetics in Confined Volumes," Langmuir, 24(9), 4439-4442(2008). https://doi.org/10.1021/la800053e
  20. Courtois, F., Olguin, L. F., Whyte, G., Theberge, A. B., Huck, W. T. S., Hollfelder, F. and Abell, C., "Controlling the Retention of Small Molecules in Emulsion Microdroplets for Use in Cell-Based Assays," Anal. Chem., 81(8), 3008-3016(2009). https://doi.org/10.1021/ac802658n
  21. Liau, A., Karnik, R., Majumdar, A. and Cate, J. H. D., "Mixing Crowded Biological Solutions in Milliseconds," Anal. Chem., 77(23), 7618-7625(2005). https://doi.org/10.1021/ac050827h
  22. Tan, Y. C., Ho, Y. L. and Lee, A. P., "Droplet Coalescence by Geometrically Mediated Flow in Microfluidic Channels," Microfluid. Nanofluid., 3(4), 495-499(2007). https://doi.org/10.1007/s10404-006-0136-1
  23. Huebner, A., Bratton, D., Whyte, G., Yang, M., deMello, A. J., Abell, C. and Hollfelder, F., "Static Microdroplet Arrays: a Microfluidic Device for Droplet Trapping, Incubation and Release for Enzymatic and Cell-based Assays," Lab Chip, 9(5), 692-698(2009). https://doi.org/10.1039/b813709a
  24. Simon, M. G., Lin, R., Fisher, J. S. and Lee, A. P., "A Laplace Pressure Based Microfluidic Trap for Passive Droplet Trapping and Controlled Release," Biomicrofluidics, 6(1), (2012).
  25. Shim, J. U., Cristobal, G., Link, D. R., Thorsen, T., Jia, Y. W., Piattelli, K. and Fraden, S., "Control and Measurement of the Phase Behavior of Aqueous Solutions Using Microfluidics," J. Am. Chem. Soc., 129(28), 8825-8835(2007). https://doi.org/10.1021/ja071820f
  26. Schafle, C., Bechinger, C., Rinn, B., David, C. and Leiderer, P., "Cooperative Evaporation in Ordered Arrays of Volatile Droplets,"Phys. Rev. Lett., 83(25), 5302-5305(1999). https://doi.org/10.1103/PhysRevLett.83.5302
  27. Yun, J. X., Tu, C. M., Lin, D. Q., Xu, L. H., Guo, Y. T., Shen, S. C., Zhang, S. H., Yao, K. J., Guan, Y. X. and Yao, S. J., "Microchannel Liquid-flow Focusing and Cryo-polymerization Preparation of Supermacroporous Cryogel Beads for Bioseparation," J. Chromatogr. A, 1247, 81-88(2012). https://doi.org/10.1016/j.chroma.2012.05.075
  28. Lee, W. S., Jambovane, S., Kim, D. and Hong, J. W., "Predictive Model on Micro Droplet Generation Through Mechanical Cutting," Microfluid. Nanofluid., 7(3), 431-438(2009). https://doi.org/10.1007/s10404-009-0412-y
  29. Fair, R. B., "Digital Microfluidics: is a True Lab-on-a-chip Possible?," Microfluid. Nanofluid., 3(3), 245-281(2007). https://doi.org/10.1007/s10404-007-0161-8
  30. Du, W. B., Sun, M., Gu, S. Q., Zhu, Y. and Fang, Q., "Automated Microfluidic Screening Assay Platform Based on Drop Lab," Anal. Chem., 82(23), 9941-9947(2010). https://doi.org/10.1021/ac1020479
  31. Zeng, S. J., Li, B. W., Su, X. O., Qin, J. H. and Lin, B. C., "Microvalve-actuated Precise Control of Individual Droplets in Microfluidic Devices," Lab Chip, 9(10), 1340-1343(2009). https://doi.org/10.1039/b821803j
  32. Hong, J., Choi, M., Edel, J. B. and deMello, A. J., "Passive Selfsynchronized Two-droplet Generation," Lab Chip, 10(20), 2702-2709(2010). https://doi.org/10.1039/c005136e
  33. Ahn, B., Lee, K., Lee, H., Panchapakesan, R. and Oh, K. W., "Parallel Synchronization of Two Trains of Droplets Using a Railroad-like Channel Network," Lab Chip, 11(23), 3956-3962(2011). https://doi.org/10.1039/c1lc20690g
  34. Christopher, G. F., Bergstein, J., End, N. B., Poon, M., Nguyen, C. and Anna, S. L., "Coalescence and Splitting of Confined Droplets at Microfluidic Junctions," Lab Chip, 9(8), 1102-1109(2009). https://doi.org/10.1039/b813062k
  35. Choi, J. H., Lee, S. K., Lim, J. M., Yang, S. M. and Yi, G. R., "Designed Pneumatic Valve Actuators for Controlled Droplet Breakup and Generation," Lab Chip, 10(4), 456-461(2010). https://doi.org/10.1039/b915596a
  36. Link, D. R., Anna, S. L., Weitz, D. A. and Stone, H. A., "Geometrically Mediated Breakup of Drops in Microfluidic Devices," Phys. Rev. Lett., 92(5), (2004).
  37. Churski, K., Korczyk, P. and Garstecki, P., "High-throughput Automated Droplet Microfluidic System for Screening of Reaction Conditions," Lab Chip, 10(7), 816-818(2010). https://doi.org/10.1039/b925500a
  38. Hong, J., Choi, M., deMello, A. J. and Edel, J. B., "Interfacial Tension-Mediated Droplet Fusion in Rectangular Microchannels," Biochip J., 3(3), 203-207(2009).
  39. Niu, X., Gulati, S., Edel, J. B. and deMello, A. J., "Pillar-induced Droplet Merging in Microfluidic Circuits," Lab Chip, 8(11), 1837-1841(2008). https://doi.org/10.1039/b813325e
  40. Mazutis, L. and Griffiths, A. D., "Selective Droplet Coalescence Using Microfluidic Systems," Lab Chip, 12(10), 1800-1806(2012). https://doi.org/10.1039/c2lc40121e
  41. Tan, W. H. and Takeuchi, S., "A Trap-and-release Integrated Microfluidic System for Dynamic Microarray Applications," Proc. Natl. Acad. Sci. USA, 104(4), 1146-1151(2007). https://doi.org/10.1073/pnas.0606625104
  42. Boukellal, H., Selimovic, S., Jia, Y. W., Cristobal, G. and Fraden, S., "Simple, Robust Storage of Drops and Fluids in a Microfluidic Device," Lab Chip, 9(2), 331-338(2009). https://doi.org/10.1039/b808579j
  43. Bai, Y. P., He, X. M., Liu, D. S., Patil, S. N., Bratton, D., Huebner, A., Hollfelder, F., Abell, C. and Huck, W. T. S., "A Double Droplet Trap System for Studying Mass Transport Across a Droplet-droplet Interface," Lab Chip, 10(10), 1281-1285(2010). https://doi.org/10.1039/b925133b
  44. Leung, K., Zahn, H., Leaver, T., Konwar, K. M., Hanson, N. W., Page, A. P., Lo, C. C., Chain, P. S., Hallam, S. J. and Hansen, C. L., "A Programmable Droplet-based Microfluidic Device Applied to Multiparameter Analysis of Single Microbes and Microbial Communities," Proc. Natl. Acad. Sci. USA, 109(20), 7665-7670(2012). https://doi.org/10.1073/pnas.1106752109
  45. Cohen, I., Li, H., Hougland, J. L., Mrksich, M. and Nagel, S. R., "Using Selective Withdrawal to Coat Microparticles," Science, 292(5515), 265-267(2001). https://doi.org/10.1126/science.1059175
  46. Chabert, M. and Viovy, J. L., "Microfluidic High-throughput Encapsulation and Hydrodynamic Self-sorting of Single Cells," Proc. Natl. Acad. Sci. USA, 105(9), 3191-3196(2008). https://doi.org/10.1073/pnas.0708321105
  47. Yiantsios, S. G. and Davis, R. H., "On the Buoyancy-Driven Motion of a Drop Towards a Rigid Surface or a Deformable Interface," J. Fluid. Mech., 217, 547-573(1990). https://doi.org/10.1017/S0022112090000842
  48. Cubaud, T. and Mason, T. G., "Folding of Viscous Threads in Diverging Microchannels," Phys. Rev. Lett., 96(11), (2006).
  49. Agresti, J. J., Antipov, E., Abate, A. R., Ahn, K., Rowat, A. C., Baret, J. C., Marquez, M., Klibanov, A. M., Griffiths, A. D. and Weitz, D. A., "Ultrahigh-throughput Screening in Drop-based Microfluidics for Directed Evolution (vol 170, pg 4004, 2010)," Proc. Natl. Acad. Sci. USA, 107(14), 6550-6550(2010). https://doi.org/10.1073/pnas.1002891107
  50. Wang, W., Yang, C., Liu, Y. S. and Li, C. M., "On-demand Droplet Release for Droplet-based Microfluidic System," Lab Chip, 10(5), 559-562(2010). https://doi.org/10.1039/b924929j
  51. Hatakeyama, T., Chen, D. L. and Ismagilov, R. F., "Microgramscale Testing of Reaction Conditions in Solution Using Nanoliter Plugs in Microfluidics with Detection by MALDI-MS," J. Am. Chem. Soc., 128(8), 2518-2519(2006). https://doi.org/10.1021/ja057720w
  52. Theberge, A. B., Whyte, G., Frenzel, M., Fidalgo, L. M., Wootton, R. C. R. and Huck, W. T. S., "Suzuki-Miyaura Coupling Reactions in Aqueous Microdroplets with Catalytically Active Fluorous Interfaces," Chem Commun., 41, 6225-6227(2009).
  53. Miyaura, N. and Suzuki, A., "Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds," Chem. Rev., 95(7), 2457-2483(1995). https://doi.org/10.1021/cr00039a007
  54. Li, S. H., Lin, Y. J., Cao, J. G. and Zhang, S. B., "Guanidine/Pd(OAc)(2)-catalyzed Room Temperature Suzuki Cross-coupling Reaction in Aqueous Media Under Aerobic Conditions," J. Org. Chem., 72(11), 4067-4072(2007). https://doi.org/10.1021/jo0626257
  55. Prasad, N., Perumal, J., Choi, C. H., Lee, C. S. and Kim, D. P., "Generation of Monodisperse Inorganic-Organic Janus Microspheres in a Microfluidic Device," Adv. Funct. Mater., 19(10), 1656-1662(2009). https://doi.org/10.1002/adfm.200801181
  56. Chan, E. M., Alivisatos, A. P. and Mathies, R. A., "High-temperature Microfluidic Synthesis of CdSe Nanocrystals in Nanoliter Droplets," J. Am. Chem. Soc., 127(40), 13854-13861(2005). https://doi.org/10.1021/ja051381p
  57. Jung, J. H., Park, T. J., Lee, S. Y. and Seo, T. S., "Homogeneous Biogenic Paramagnetic Nanoparticle Synthesis Based on a Microfluidic Droplet Generator," Angew. Chem. Int. Edit., 51(23), 5634-5637(2012). https://doi.org/10.1002/anie.201108977
  58. Abou Hassan, A., Sandre, O., Cabuil, V. and Tabeling, P., "Synthesis of Iron Oxide Nanoparticles in a Microfluidic Device: Preliminary Results in a Coaxial Flow Millichannel," Chem Commun., 15, 1783-1785(2008).
  59. Zhao, C. X., He, L. Z., Qiao, S. Z. and Middelberg, A. P. J., "Nanoparticle Synthesis in Microreactors," Chem Eng Sci., 66(7), 1463-1479(2011). https://doi.org/10.1016/j.ces.2010.08.039
  60. Lu, A. H., Salabas, E. L. and Schuth, F., "Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application," Angew. Chem. Int. Edit., 46(8), 1222-1244(2007). https://doi.org/10.1002/anie.200602866
  61. Jeong, H. H., Kim, Y. G., Jang, S. C., Yi, H. M. and Lee, C. S., "Profiling Surface Glycans on Live Cells and Tissues Using Quantum Dot-lectin Nanoconjugates," Lab Chip, 12(18), 3290-3295(2012). https://doi.org/10.1039/c2lc40248c
  62. Kim, J., Chung, Y. M., Kang, S. M., Choi, C. H., Kim, B. Y., Kwon, Y. T., Kim, T. J., Oh, S. H. and Lee, C. S., "Palladium Nanocatalysts Immobilized on Functionalized Resin for the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen," ACS Catal., 2(6), 1042-1048(2012). https://doi.org/10.1021/cs300090h
  63. Bharde, A., Rautaray, D., Bansal, V., Ahmad, A., Sarkar, I., Yusuf, S. M., Sanyal, M. and Sastry, M., "Extracellular Biosynthesis of Magnetite Using Fungi," Small, 2(1), 135-141(2006). https://doi.org/10.1002/smll.200500180
  64. Duraiswamy, S. and Khan, S. A., "Plasmonic Nanoshell Synthesis in Microfluidic Composite Foams," Nano Lett, 10(9), 3757-3763(2010). https://doi.org/10.1021/nl102478q
  65. Rubin, A. E., Tummala, S., Both, D. A., Wang, C. C. and Delaney, E. J., "Emerging Technologies Supporting Chemical Process R&D and Their Increasing Impact on Productivity in the Pharmaceutical Industry," Chem. Rev., 106(7), 2794-2810(2006). https://doi.org/10.1021/cr040674i
  66. An, H. Y. and Cook, P. D., "Methodologies for Generating Solution-phase Combinatorial Libraries," Chem. Rev., 100(9), 3311-3340(2000). https://doi.org/10.1021/cr990014r
  67. Theberge, A. B., Mayot, E., El Harrak, A., Kleinschmidt, F., Huck, W. T. S. and Griffiths, A. D., "Microfluidic Platform for Combinatorial Synthesis in Picolitre Droplets," Lab Chip, 12(7), 1320-1326(2012). https://doi.org/10.1039/c2lc21019c
  68. Zhang, C. S., Xing, D. and Li, Y. Y., "Micropumps, Microvalves, and Micromixers Within PCR Microfluidic Chips: Advances and Trends," Biotechnol Adv, 25(5), 483-514(2007). https://doi.org/10.1016/j.biotechadv.2007.05.003
  69. Hindson, B. J., Ness, K. D., Masquelier, D. A., Belgrader, P., Heredia, N. J., Makarewicz, A. J., Bright, I. J., Lucero, M. Y., Hiddessen, A. L., Legler, T. C., Kitano, T. K., Hodel, M. R., Petersen, J. F., Wyatt, P. W., Steenblock, E. R., Shah, P. H., Bousse, L. J., Troup, C. B., Mellen, J. C., Wittmann, D. K., Erndt, N. G., Cauley, T. H., Koehler, R. T., So, A. P., Dube, S., Rose, K. A., Montesclaros, L., Wang, S. L., Stumbo, D. P., Hodges, S. P., Romine, S., Milanovich, F. P., White, H. E., Regan, J. F., Karlin-Neumann, G. A., Hindson, C. M., Saxonov, S. and Colston, B. W., "High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number," Anal. Chem., 83(22), 8604-8610(2011). https://doi.org/10.1021/ac202028g
  70. Kiss, M. M., Ortoleva-Donnelly, L., Beer, N. R., Warner, J., Bailey, C. G., Colston, B. W., Rothberg, J. M., Link, D. R. and Leamon, J. H., "High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets," Anal. Chem., 80(23), 8975-8981(2008). https://doi.org/10.1021/ac801276c
  71. Schaerli, Y., Wootton, R. C., Robinson, T., Stein, V., Dunsby, C., Neil, M. A. A., French, P. M. W., deMello, A. J., Abell, C. and Hollfelder, F., "Continuous-Flow Polymerase Chain Reaction of Single-Copy DNA in Microfluidic Microdroplets," Anal. Chem., 81(1), 302-306(2009). https://doi.org/10.1021/ac802038c
  72. Hatch, A. C., Fisher, J. S., Tovar, A. R., Hsieh, A. T., Lin, R., Pentoney, S. L., Yang, D. L. and Lee, A. P., "1-Million Droplet Array with Wide-field Fluorescence Imaging for Digital PCR," Lab Chip., 11(22), 3838-3845(2011). https://doi.org/10.1039/c1lc20561g
  73. Fallah-Araghi, A., Baret, J. C., Ryckelynck, M. and Griffiths, A. D., "A Completely in vitro Ultrahigh-throughput Droplet-based Microfluidic Screening System for Protein Engineering and Directed Evolution," Lab Chip, 12(5), 882-891(2012). https://doi.org/10.1039/c2lc21035e
  74. Tawfik, D. S. and Griffiths, A. D., "Man-made Cell-like Compartments for Molecular Evolution," Nat. Biotechnol., 16(7), 652-656(1998). https://doi.org/10.1038/nbt0798-652
  75. Juul, S., Nielsen, C. J. F., Labouriau, R., Roy, A., Tesauro, C., Jensen, P. W., Harmsen, C., Kristoffersen, E. L., Chiu, Y. L., Frohlich, R., Fiorani, P., Cox-Singh, J., Tordrup, D., Koch, J., Bienvenu, A. L., Desideri, A., Picot, S., Petersen, E., Leong, K. W., Ho, Y. P., Stougaard, M. and Knudsen, B. R., "Droplet Microfluidics Platform for Highly Sensitive and Quantitative Detection of Malaria-Causing Plasmodium Parasites Based on Enzyme Activity Measurement," ACS nano, 6(12), 10676-10683(2012). https://doi.org/10.1021/nn3038594
  76. Lee, K. G., Park, T. J., Soo, S. Y., Wang, K. W., Kim, B. H., Park, J. H., Lee, C. S., Kim, D. H. and Lee, S. J., "Synthesis and Utilization of E. coli-Encapsulated PEG-Based Microdroplet Using a Microfluidic Chip for Biological Application," Biotechnol. Bioeng., 107(4), 747-751(2010). https://doi.org/10.1002/bit.22861
  77. Joensson, H. N., Samuels, M. L., Brouzes, E. R., Medkova, M., Uhlen, M., Link, D. R. and Andersson-Svahn, H., "Detection and Analysis of Low-Abundance Cell-Surface Biomarkers Using Enzymatic Amplification in Microfluidic Droplets," Angew. Chem. Int. Edit., 48(14), 2518-2521(2009). https://doi.org/10.1002/anie.200804326
  78. Brouzes, E., Medkova, M., Savenelli, N., Marran, D., Twardowski, M., Hutchison, J. B., Rothberg, J. M., Link, D. R., Perrimon, N. and Samuels, M. L., "Droplet Microfluidic Technology for Single-cell High-throughput Screening," Proc. Natl. Acad. Sci. USA, 106(34), 14195-14200(2009). https://doi.org/10.1073/pnas.0903542106
  79. Edd, J. F., Carlo, D. D, Humphry, K. J., Koster, S., Irimia, D., Weitz, D. A. and Toner, M., "Controlled Encapsulation of Singlecells Into Monodisperse Picolitre Drops," Lab Chip, 8(8), 1262-1264(2008). https://doi.org/10.1039/b805456h
  80. Kemna, E. W. M., Schoeman, R. M., Wolbers, F., Vermes, I., Weitz, D. A. and van den Berg, A., "High-yield Cell Ordering and Deterministic Cell-in-droplet Encapsulation Using Dean Flow in a Curved Microchannel," Lab Chip, 12(16), 2881-2887(2012). https://doi.org/10.1039/c2lc00013j
  81. Koster, S., Angile, F. E., Duan, H., Agresti, J. J., Wintner, A., Schmitz, C., Rowat, A. C., Merten, C. A., Pisignano, D., Griffiths, A. D. and Weitz, D. A., "Drop-based Microfluidic Devices for Encapsulation of Single Cells," Lab Chip, 8(7), 1110-1115(2008). https://doi.org/10.1039/b802941e
  82. El Debs, B., Utharala, R., Balyasnikova, I. V., Griffiths, A. D. and Merten, C. A., "Functional Single-cell Hybridoma Screening Using Droplet-based Microfluidics," Proc. Natl. Acad. Sci. USA, 109(29), 11570-11575(2012). https://doi.org/10.1073/pnas.1204514109

피인용 문헌

  1. Increase in Voltage Efficiency of Picoinjection using Microfluidic Picoinjector Combined Faraday Moat with Silver Nanoparticles Electrode vol.53, pp.4, 2015, https://doi.org/10.9713/kcer.2015.53.4.472
  2. Synthesis and characterization of thermosensitive gelatin hydrogel microspheres in a microfluidic system vol.24, pp.6, 2016, https://doi.org/10.1007/s13233-016-4069-6
  3. Microfluidic preparation of monodisperse polymeric microspheres coated with silica nanoparticles vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-26829-z
  4. 미세접촉인쇄법을 이용한 지방세포 칩 제작 vol.54, pp.2, 2014, https://doi.org/10.9713/kcer.2016.54.2.223
  5. Spontaneous generation of emulsion droplets by autonomous fluid-pumping using the gas permeability of poly(dimethylsiloxane) (PDMS) vol.38, pp.2, 2014, https://doi.org/10.1080/01932691.2016.1154862
  6. 유동-집속 생성기의 병렬화를 통한 에멀젼 생산속도 향상 vol.56, pp.5, 2014, https://doi.org/10.9713/kcer.2018.56.5.761
  7. Microfluidic synthesis of monodisperse porous polystyrene microspheres for sorption of bovine serum albumin vol.37, pp.6, 2014, https://doi.org/10.1080/02652048.2020.1785027