DOI QR코드

DOI QR Code

The Effect of Waste Catalysts and Kinetic Study on the CO2-Lignite Gasification Reaction

CO2-갈탄 가스화 반응에 미치는 폐촉매의 영향 및 반응속도론 연구

  • Seo, Seok-Jin (Department of Mineral Resources & Energy Engineering, Chonbuk National University) ;
  • Lee, So-Jung (Department of Energy Storage & Conversion Engineering, Chonbuk National University) ;
  • Sohn, Jung Min (Department of Mineral Resources & Energy Engineering, Chonbuk National University)
  • 서석진 (전북대학교 자원에너지공학과) ;
  • 이소정 (전북대학교 에너지저장변환공학과) ;
  • 손정민 (전북대학교 자원에너지공학과)
  • Received : 2013.11.22
  • Accepted : 2013.12.26
  • Published : 2014.03.31

Abstract

In this study, we investigated reaction rate constant and activation energy of $CO_2$ lignite gasification by using waste catalysts (I, II, III) and $K_2CO_3$. The gasification experiments were conducted with the lignite which was mixed physically with the catalysts of 1 wt%, 5 wt%, 10 wt% by thermogravimetry with TGA at $800^{\circ}C$, $850^{\circ}C$ and $900^{\circ}C$. The experimental data was analyzed with kinetic models (VRM, SCM and MVRM). MVRM was the most suitable among the three models. It was confirmed that gasification rate increased with increasing temperature and the activation energies of $CO_2$ gasification of lignite with mixed waste catalysts were lower than that of lignite alone at all temperatures. Especially, 10 wt% of waste catalyst III showed the lowest activation energy, 92.37 kJ/mol, among all lignite-char with catalysts.

본 연구에서는 갈탄에 폐촉매(I, II, III) 및 $K_2CO_3$를 이용한 $CO_2$ 가스화의 반응속도상수 및 활성화 에너지를 조사하였다. 가스화 실험은 1 wt%, 5 wt%, 10 wt%의 촉매를 물리적으로 혼합한 갈탄을 열중량분석(Thermogravity analysis, TGA)을 이용하여 가스화 온도 $800^{\circ}C$, $850^{\circ}C$, $900^{\circ}C$ 범위에서 수행하였다. 실험 데이터를 세 가지 반응속도 모델(volumetric reaction model, VRM; shrinking core model, SCM; modified volumetric reaction model, MVRM)에 적용한 결과 MVRM이 가장 적합하였다. 가스화 속도는 온도가 높아짐에 따라 증가하는 것으로 관찰되었으며, 모든 실험 온도에서 폐촉매를 이용한 가스화 반응의 활성화 에너지는 촉매를 혼합하지 않은 갈탄 보다 낮게 나타났다. 특히, 폐촉매 III 10 wt%의 경우 활성화 에너지가 92.37 kJ/mol로 가장 낮게 얻어졌다.

Keywords

References

  1. Sun, Q., Li, W., Chen, H., and Li, B., "The $CO_2$-gasification and Kinetics of Shenmu Maceeral Chars with and without Catalyst," Fuel., 83, 1787-1793 (2004). https://doi.org/10.1016/j.fuel.2004.02.020
  2. Song, B. H., Kang, S. K., and Kim, S. D., "Catalytic Activity of K-Fe, Na-Fe, Na-Fe-Ca Mixtures on Char-Steam Gasification," Korean J. Chem. Eng., 6, 749-759 (1992).
  3. Lahijani, P., Zainal, Z. A., and Mohamed, A. R., "Catalytic Effect of Iron Species on $CO_2$ Gasification Reactivity of Oil Palm Shell Char," Thermochimicaacta., 546, 24-31 (2012). https://doi.org/10.1016/j.tca.2012.07.023
  4. Lee, J. Y., and Kim, J. S., "Recycling of Spent Catalysts Petrochemical," Trends Met. Mater. Engineering., 15, 17-24 (2002).
  5. Park, S. T., Choi, Y. T., and Sohn, J. M., "The Study of $CO_2$ Gasification of Low Rank Coal Impregnated by $K_2CO_3$, $Mn(NO_3)_2$, and $Ce(NO_3)_3$," Korean J. Chem. Eng., 3, 312-318 (2011).
  6. Kwak, J. H., Seo, S. J., Lee, S. J., Song, B. H., and Sohn, J. M., "The Effect on the Steam Gasification Reaction of Low-Rank Coal Mixed with Waste Catalysts," Trans. Korean Hydro. New Energy Soc., 6, 647-653 (2012).
  7. Adhorlolo, A. A., and Rao, Y. K., "Effect of Potassium and Sodium Carbonate Catalysts on the Rate of Gasification of Metallurgical Coke," Carbon., 22, 173-176 (1984). https://doi.org/10.1016/0008-6223(84)90207-0
  8. Alejandro, M., and Fanor, M., "Reactivity of Coal Gasification with Steam and $CO_2$," Fuel., 77, 1831-1839 (1998). https://doi.org/10.1016/S0016-2361(98)00123-9
  9. Jian, H. Z., Zhi, J. Z., and Fu, C. W., "Modeling Reaction Kinetics of Petroleum Coke Gasification with $CO_2$," Chem. Eng. Process., 46, 630-636 (2007). https://doi.org/10.1016/j.cep.2006.08.008
  10. Kasaoka, S., Sakata, Y., and Tong, C., "Kinetic Evaluation of the Reactivity of Various Coal Chars for Gasification with Carbon Dioxide in Comparison with Steam," Int. Chem. Eng., 25, 160-175 (1985).
  11. Park, J. Y., Lee, D. K., Hwang, S. C., Kim, S. K., Lee, S. H., Yoon, S. K., Yoo, J. H., and Rhee, Y. W., "Comparative Modeling of Low Temperature Char-$CO_2$ Gasification Reaction of Drayton Coal by Carbon Dioxide Concentration," Clean Technol., 16, 1-11 (2010).
  12. Shufen, L., and Yuanlin, C., "Catalytic Gasification of Gascoal Char in $CO_2$," Fuel., 74, 456-458 (1995). https://doi.org/10.1016/0016-2361(95)93482-S

Cited by

  1. Reactivity Study on the Kideco Coal Catalytic Coal Gasification under CO2Atmosphere Using Gas-Solid Kinetic Models vol.21, pp.1, 2015, https://doi.org/10.7464/ksct.2015.21.1.053
  2. Study on CO2-Coal Gasification Reaction Using Natural Mineral Catalysts vol.27, pp.1, 2016, https://doi.org/10.14478/ace.2015.1122
  3. A study on the direct catalytic steam gasification of coal for the bench-scale system vol.34, pp.10, 2017, https://doi.org/10.1007/s11814-017-0167-1
  4. Steam Reforming of Tar Produced from Biomass Gasification Using Ni/Ru-X/Al2O3(X=K or Mn) Catalyst vol.22, pp.1, 2016, https://doi.org/10.7464/ksct.2016.22.1.053