References
- M. Brodmann and L. T. Nhan, A finiteness result for associated primes of certain Ext-modules, Comm. Algebra 36 (2008), no. 4, 1527-1536. https://doi.org/10.1080/00927870701869543
- M. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge University Press, 1998.
- W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, 1993.
- N. T. Cuong, On the dimension of the non-Cohen-Macaulay locus of local rings admitting dualizing Complexes, Math. Proc. Cambridge. Philos. Soc. 109 (1991), no. 3, 479-488. https://doi.org/10.1017/S0305004100069929
- N. T. Cuong, On the least degree of polynomials bounding above the differences between lengths and multiplicities of certain system of parameters in local rings, Nagoya Math. J. 125 (1992), 105-114. https://doi.org/10.1017/S0027763000003925
- N. T. Cuong, M. Morales, and L. T. Nhan, On the length of generalized fractions, J. Algebra 265 (2003), no. 1, 100-113. https://doi.org/10.1016/S0021-8693(03)00224-2
- N. T. Cuong and L. T. Nhan, On Noetherian dimension of Artinian modules, Vietnam J. Math. 30 (2002), no. 2, 121-130.
- N. T. Cuong, L. T. Nhan, and N. T. K. Nga, On pseudo supports and non-Cohen-Macaulay locus of finitely generated modules, J. Algebra 323 (2010), no. 10, 3029-3038. https://doi.org/10.1016/j.jalgebra.2010.03.006
- N. T. Cuong, P. Schenzel, and N. V. Trung, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57-73. https://doi.org/10.1002/mana.19780850106
- D. Ferrand and M. Raynaud, Fibres formelles d'un anneau local Noetherian, Ann. Sci. Ec. Norm. Sup. (4) 3 (1970), 295-311. https://doi.org/10.24033/asens.1195
- M. Hellus, On the set of associated primes of a local cohomology modules, J. Algebra 237 (2001), no. 1, 406-419. https://doi.org/10.1006/jabr.2000.8580
- T. Kawasaki, On arithmetic Macaulayfication of Noetherian rings, Trans. Amer. Math. Soc. 354 (2002), no. 1, 123-149. https://doi.org/10.1090/S0002-9947-01-02817-3
- D. Kirby, Dimension and length for Artinian modules, Quart. J. Math. Oxford Ser. (2) 41 (1990), no. 164, 419-429. https://doi.org/10.1093/qmath/41.4.419
- R. Lu and Z. Tang, The f-depth of an ideal on a module, Proc. Amer. Math. Soc. 130 (2002), no. 7, 1905-1912. https://doi.org/10.1090/S0002-9939-01-06269-4
- I. G. Macdonald, Secondary representation of modules over a commutative ring, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), pp. 23-43. Academic Press, London, 1973.
- H. Matsumura, Commutative Ring Theory, Cambridge, Cambridge University Press, 1986.
- L. T. Nhan, On generalized regular sequences and the finiteness for associated primes of local cohomology modules, Comm. Algebra 33 (2005), no. 3, 793-806. https://doi.org/10.1081/AGB-200051137
- L. T. Nhan and M. Morales, Generalized f-modules and the associated prime of local cohomology modules, Comm. Algebra 34 (2006), no. 3, 863-878. https://doi.org/10.1080/00927870500441676
- R. N. Roberts, Krull dimension for Artinian modules over quasi-local commutative rings, Quart. J. Math. Oxford Ser. (2) 26 (1975), no. 103, 269-273. https://doi.org/10.1093/qmath/26.1.269
- N. V. Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math J. 102 (1986), 1-49. https://doi.org/10.1017/S0027763000000416
- N. Zamani, Cohen-Macaulay modules in dimension > s and results on local cohomology, Comm. Algebra 37 (2009), no. 4, 1297-1307. https://doi.org/10.1080/00927870802279006