DOI QR코드

DOI QR Code

Hydrogen Absorption at a Low Temperature by MgH2 after Reactive Mechanical Grinding

  • Song, Myoung Youp (Division of Advanced Materials Engineering, Research Center of Advanced Materials Development, Engineering Research Institute, Chonbuk National University) ;
  • Lee, Seong Ho (Department of Materials Engineering, Graduate School, Chonbuk National University) ;
  • Kwak, Young Jun (Department of Materials Engineering, Graduate School, Chonbuk National University) ;
  • Park, Hye Ryoung (Faculty of Applied Chemical Engineering, Chonnam National University)
  • Received : 2014.01.09
  • Accepted : 2014.03.05
  • Published : 2014.03.27

Abstract

Pure $MgH_2$ was milled under a hydrogen atmosphere (reactive mechanical grinding, RMG). The hydrogen storage properties of the prepared samples were studied at a relatively low temperature of 423 K and were compared with those of pure Mg. The hydriding rate of the Mg was extremely low (0.0008 wt% H/min at n = 4), and the $MgH_2$ after RMG had higher hydriding rates than that of Mg at 423 K under 12 bar $H_2$. The initial hydriding rate of $MgH_2$ after RMG at 423 K under 12 bar $H_2$ was the highest (0.08 wt% H/min) at n = 2. At n = 2, the $MgH_2$ after RMG absorbed 0.39 wt% H for 5 min, and 1.21 wt% H for 60 min at 423K under 12 bar $H_2$. At 573 K under 12 bar $H_2$, the $MgH_2$ after RMG absorbed 4.86 wt% H for 5 min, and 5.52 wt% H for 60 min at n = 2. At 573 K and 423 K under 1.0 bar $H_2$, the $MgH_2$ after RMG and the Mg did not release hydrogen. The decrease in particle size and creation of defects by reactive mechanical grinding are believed to have led to the increase in the hydriding rate of the $MgH_2$ after RMG at a relatively low temperature of 423 K.

Keywords

References

  1. M. Y. Song, Y. J. Kwak, B. S. Lee, H. R. Park and B. G. Kim, Kor. J. Met. Mater., 49(12), 989 (2011).
  2. S. H. Hong, S. N. Kwon, and M. Y. Song, Kor. J. Met. Mater., 49(4), 298 (2011).
  3. K. I. Kim and T. W. Hong, Kor. J. Met. Mater., 49(3), 264 (2011). https://doi.org/10.3365/KJMM.2011.49.3.264
  4. J. J. Reilly and R. H. Wiswall, Inorg. Chem., 6(12), 2220 (1967). https://doi.org/10.1021/ic50058a020
  5. J. J. Reilly and R. H. Wiswall Jr, Inorg. Chem., 7(11), 2254 (1968). https://doi.org/10.1021/ic50069a016
  6. E. Akiba, K. Nomura, S. Ono and S. Suda, Int. J. Hydrogen Energy, 7(10), 787 (1982). https://doi.org/10.1016/0360-3199(82)90069-6
  7. M. H. Mintz, Z. Gavra and Z. Hadari, J. Inorg. Nucl. Chem., 40(5), 765 (1978). https://doi.org/10.1016/0022-1902(78)80147-X
  8. H. C. Zhong, H. Wang, L. Z. Ouyang and M. Zhu, J. Alloys Compd., 509(11), 4268 (2011). https://doi.org/10.1016/j.jallcom.2010.11.072
  9. P. Pei, X. Song, J. Liu, A. Song, P. Zhang and G. Chen, Int. J. Hydrogen Energy, 37(1), 984 (2012). https://doi.org/10.1016/j.ijhydene.2011.03.082
  10. Z. Li, X. Liu, L. Jiang and S. Wang, Int. J. Hydrogen Energy, 32(12), 1869 (2007). https://doi.org/10.1016/j.ijhydene.2006.09.022
  11. J. M. Boulet and N. Gerard, J. Less-Common Met., 89(1), 151 (1983). https://doi.org/10.1016/0022-5088(83)90261-8
  12. M. Lucaci, Al. R. Biris, R. L. Orban, G. B. Sbarcea and V. Tsakiris, J. Alloys Compd., 488(1), 163 (2009). https://doi.org/10.1016/j.jallcom.2009.07.037
  13. Z. Li, X. Liu, Z. Huang, L. Jiang and S. Wang, Rare Metals, 25(6) (Supplement 1), 247 (2006). https://doi.org/10.1016/S1001-0521(07)60083-7
  14. S. Aminorroaya, A. Ranjbar, Y. H. Cho, H. K. Liu and A. K. Dahle, Int. J. Hydrogen Energy, 36(1), 571 (2011). https://doi.org/10.1016/j.ijhydene.2010.08.103
  15. Y. H. Cho, S. Aminorroaya, H. K. Liu and A. K. Dahle, Int. J. Hydrogen Energy, 36(8), 4984 (2011). https://doi.org/10.1016/j.ijhydene.2010.12.090
  16. C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, P. Matteazzi and A. Marini, Intermetallics, 18(2), 203 (2010). https://doi.org/10.1016/j.intermet.2009.07.012
  17. B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier and P. Hagenmuller, Mater. Res. Bull., 11(11), 1441 (1976). https://doi.org/10.1016/0025-5408(76)90057-X
  18. F. G. Eisenberg, D. A. Zagnoli and J. J. Sheridan III, J. Less-Common Met., 74(2), 323 (1980). https://doi.org/10.1016/0022-5088(80)90170-8
  19. J. Mao, Z. Guo, X. Yu, H. Liu, Z. Wu and J. Ni, Int. J. Hydrogen Energy, 35(10), 4569 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.107
  20. J. Cermak and B. David, Int. J. Hydrogen Energy, 36(21), 13614 (2011). https://doi.org/10.1016/j.ijhydene.2011.07.133
  21. D. Chen, Y. M. Wang, L. Chen, S. Liu, C. X. Ma and L. B. Wang, Acta Materialia, 52(2), 521 (2004). https://doi.org/10.1016/j.actamat.2003.09.037
  22. L. Matovi , S. Kurko, Z. Raskovi -Lovre, R. Vujasin, I. Milanovi , S. Milosevi and J. Grbovi Novakovi , Int. J. Hydrogen Energy, 37(8), 6727 (2012). https://doi.org/10.1016/j.ijhydene.2012.01.084
  23. M. Y. Song, S. H. Baek, J. -L. Bobet, H. R. Park, and B. G. Kim, Met. Mater. Int., 19(2), 237 (2013). https://doi.org/10.1007/s12540-013-2017-y
  24. J. -L. Bobet, B. Chevalier, M. Y. Song, B. Darriet, J. Alloys Compd., 356-357, 570 (2003). https://doi.org/10.1016/S0925-8388(02)01279-3
  25. M. Y. Song, Y. J. Kwak, S. H. Lee, H. R. Park, and B. G. Kim, Met. Mater. Int., 19(4), 879 (2013). https://doi.org/10.1007/s12540-013-4033-3
  26. M. Y. Song, S. H. Baek, J. -L. Bobet, and S. H. Hong, Int. J. Hydrogen Energy, 35(19), 10366 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.161